100−−−√100100100 Use Newton’s method to approximate the given number correct to eight
- MATH
sec2(π2−x)−1=cot2(x)sec2(π2-x)-1=cot2(x) Verfiy the identity.
First, sec(x)=1cos(x)sec(x)=1cos(x) and cot(x)=cos(x)sin(x).cot(x)=cos(x)sin(x). Second, cos(π2−x)=sin(x)cos(π2-x)=sin(x) and sin(π2−x)=cos(x).sin(π2-x)=cos(x). Therefore the left part is
1 educator answer
- MATH
sin(t)csc(π2−t)=tan(t)sin(t)csc(π2-t)=tan(t) Verfiy the identity.
Verify the identity: sin(t)csc(π2−t)=tan(t)sin(t)csc(π2-t)=tan(t) Simplify the left side of the equation by using the cofunction identity csc((pi/2)-t)=sec(t). sin(t)sec(t)=tan(t)sin(t)sec(t)=tan(t) Simplify the left side of the…
1 educator answer
- MATH
sec2(y)−cot2(π2−y)=1sec2(y)-cot2(π2-y)=1 Verfiy the identity.
First, sec(y)=1cos(y)sec(y)=1cos(y) and cot(y)=cos(y)sin(y).cot(y)=cos(y)sin(y). Second, cos(π2−y)=sin(y)cos(π2-y)=sin(y) and sin(π2−y)=cos(y).sin(π2-y)=cos(y). Therefore sec2(y)−cot2(π2−y)=1cos2(y)−sin2(y)cos2(y)=sec2(y)-cot2(π2-y)=1cos2(y)-sin2(y)cos2(y)=…
1 educator answer
- MATH
cos2(β)+cos2(π2−β)=1cos2(β)+cos2(π2-β)=1 Verfiy the identity.
cos(π2−b)=sin(b)cos(π2-b)=sin(b) for all b. So the initial identity is equivalent to cos2(b)+sin2(b)=1,cos2(b)+sin2(b)=1, which is true.
1 educator answer
- MATH
1−cos(θ)1+cos(θ)−−−−−−−−−√=1−cos(θ)|sin(θ)|1-cos(θ)1+cos(θ)=1-cos(θ)|sin(θ)| Verfiy the identity.
By squaring both sides you are assuming that the equality is true, but this is what was to be established. Better is to multiply left side by sqrt(1-cos)/sqrt(1-cos) resulting in…
2 educator answers
- MATH
1+sin(θ)1−sin(θ)−−−−−−−−−√=1+sin(θ)|cos(θ)|1+sin(θ)1-sin(θ)=1+sin(θ)|cos(θ)| Verfiy the identity.
Verify 1+sin(θ)1−sin(θ)−−−−−−−−−√=1+sin(θ)|cos(θ)|1+sin(θ)1-sin(θ)=1+sin(θ)|cos(θ)| Working from the left side, we show that it is equivalent to the right side: 1+sin(θ)1−sin(θ)−−−−−−−−−√1+sin(θ)1-sin(θ)…
1 educator answer
- MATH
We’ll use the formula (a−b)⋅(a+b)=a2−b2.(a-b)⋅(a+b)=a2-b2. Multiply equation by (sin(x)+sin(y))⋅(cos(x)+cos(y))(sin(x)+sin(y))⋅(cos(x)+cos(y)) (the product of the denominators):
2 educator answers
- MATH
tan(x)+cot(y)tan(x)cot(y)=tan(y)+cot(x)tan(x)+cot(y)tan(x)cot(y)=tan(y)+cot(x) Verfiy the identity.
Verify the identity: tan(x)+cot(y)tan(x)cot(y)=tan(y)+cot(x)tan(x)+cot(y)tan(x)cot(y)=tan(y)+cot(x) Rewrite the left side of the equation as two fractions. tan(x)tan(x)cot(y)+cot(y)tan(x)cot(y)=tan(y)+cot(x)tan(x)tan(x)cot(y)+cot(y)tan(x)cot(y)=tan(y)+cot(x)…
1 educator answer
- MATH
Verify the identity: tan(x)+tan(y)1−tan(x)tan(y)=cot(x)+cot(y)cot(x)cot(y)−1tan(x)+tan(y)1-tan(x)tan(y)=cot(x)+cot(y)cot(x)cot(y)-1 Divide every term on the left side of the equation by tan(x)tan(y)…
1 educator answer
- MATH
(1+sin(y))[1+sin(−y)]=cos2(y)(1+sin(y))[1+sin(-y)]=cos2(y) Verfiy the identity.
Verify (1+sin(y))(1-sin(y))=cos^2(y): Working from the left side we show that it is equivalent to the right side: (1+sin(y))(1-sin(y)) =1-sin^2(y) =cos^2(y) using the pythagorean identity
1 educator answer
- MATH
csc(−x)sec(−x)=−cot(x)csc(-x)sec(-x)=-cot(x) Verfiy the identity.
Verify the identity: csc(−x)sec(−x)=−cot(x)csc(-x)sec(-x)=-cot(x) Simplify the left side of the equation using the following even/odd identities: csc(-x)=-csc(x) and sec(-x)=sec(x) −csc(x)sec(x)=−cot(x)-csc(x)sec(x)=-cot(x)…
1 educator answer
- MATH
tan(x)cot(x)cos(x)=sec(x)tan(x)cot(x)cos(x)=sec(x) Verfiy the identity.
Verify the identity: tan(x)cot(x)cos(x)=sec(x)tan(x)cot(x)cos(x)=sec(x) Simplify the numerator on the left side of the equation. Since tan(x) and cot(x) are reciprocals their product is 1. 1cos(x)=sec(x)1cos(x)=sec(x) Simplify…
1 educator answer
- MATH
cos[(π2)−x]sin[(π2)−x]=tan(x)cos[(π2)-x]sin[(π2)-x]=tan(x) Verfiy the identity.
Verify the identity: cos[(π2)−x]sin[(π2)−x]=tanxcos[(π2)-x]sin[(π2)-x]=tanx Simplify the left side of the equation using the cofunction identity. sin(x)cos(x)=tanxsin(x)cos(x)=tanx Simplify the left side of the equation using…
1 educator answer
- MATH
tan(π2−θ)tan(θ)=1tan(π2-θ)tan(θ)=1 Verfiy the identity.
By definition, tan(t)=sin(t)/cos(t). Also, sin(π2−t)=cos(t)sin(π2-t)=cos(t) and cos(π2−t)=sin(t).cos(π2-t)=sin(t). Therefore tan(π2−t)=cos(t)sin(t)tan(π2-t)=cos(t)sin(t) and tan(π2−t)⋅tan(t)=1,tan(π2-t)⋅tan(t)=1, QED.
1 educator answer
- MATH
Verify the identity. cos(x)−[cos(x)1−tan(x)]=sinxcosxsinx−cosxcos(x)-[cos(x)1-tan(x)]=sinxcosxsinx-cosx cos(x)(1−tan(x))−cos(x)1−tan(x)=sin(x)cos(x)sin(x)−cos(x)cos(x)(1-tan(x))-cos(x)1-tan(x)=sin(x)cos(x)sin(x)-cos(x)…
1 educator answer
- MATH
1cos(x)+1+1cos(x)−1=−2csc(x)cot(x)1cos(x)+1+1cos(x)-1=-2csc(x)cot(x) Verify the identity.
Verify the identity: 1cos(x)+1+1cos(x)−1=−2csc(x)cot(x)1cos(x)+1+1cos(x)-1=-2csc(x)cot(x)cos(x)−1+cos(x)+1cos2(x)−1=−2csc(x)cot(x)cos(x)-1+cos(x)+1cos2(x)-1=-2csc(x)cot(x) 2cos(x)cos2(x)−1=−2csc(x)cot(x)2cos(x)cos2(x)-1=-2csc(x)cot(x) Use the pythagorean identity…
1 educator answer
- MATH
cos(θ)cot(θ)1−sin(θ)−1=csc(θ)cos(θ)cot(θ)1-sin(θ)-1=csc(θ) Verfiy the identity.
Verify the identity cos(θ)cot(θ)1−sin(θ)−1=csc(θ)cos(θ)cot(θ)1-sin(θ)-1=csc(θ) cos(θ)cot(θ)1−sin(θ)−1=csc(θ)cos(θ)cot(θ)1-sin(θ)-1=csc(θ) Rewrite cot(θ)cot(θ) as a quotient….
1 educator answer
- MATH
1+sin(θ)cos(θ)+cos(θ)1+sin(θ)=2sec(θ)1+sin(θ)cos(θ)+cos(θ)1+sin(θ)=2sec(θ) Verfiy the identity.
Transform the left part: 1+sin(θ)cos(θ)+cos(θ)1+sin(θ)=1+sin(θ)cos(θ)+cos(θ)1+sin(θ)= (1+sin(θ))2+cos2(θ)cos(θ)⋅(1+sin(θ))=(1+sin(θ))2+cos2(θ)cos(θ)⋅(1+sin(θ))=
1 educator answer
- MATH
1sin(x)−1csc(x)=csc(x)−sin(x)1sin(x)-1csc(x)=csc(x)-sin(x) Verfiy the identity.
Verify the identity: 1sin(x)−1csc(x)=csc(x)−sin(x)1sin(x)-1csc(x)=csc(x)-sin(x) Simplify the left side of the equation using the following reciprocal identities: 1/sin(x)=csc(x) and 1/csc(x)=sin(x)….
1 educator answer
- MATH
1tan(x)+1cot(x)=tan(x)+cot(x)1tan(x)+1cot(x)=tan(x)+cot(x) Verfiy the identity.
cot(x)=1/tan(x) and tan(x)=1/cot(x). So the left side is cot(x)+tan(x) and the right is tan(x)+cot(x), which are the same.
1 educator answer
- MATH
sec(x)(csc(x)−2sin(x))=cot(x)−tan(x)sec(x)(csc(x)-2sin(x))=cot(x)-tan(x) Verify the identity.
Transform the left side: sec(x)⋅(csc(x)−2sin(x))=(1cos(x))⋅(1−2sin2(x)sin(x)=cos2(x)−sin2(x)cos(x)⋅sin(x).sec(x)⋅(csc(x)-2sin(x))=(1cos(x))⋅(1-2sin2(x)sin(x)=cos2(x)-sin2(x)cos(x)⋅sin(x).The right side is…
1 educator answer
- MATH
sec(x)−cos(x)=sin(x)tan(x)sec(x)-cos(x)=sin(x)tan(x) Verfiy the identity.
Verify the identity: sec(x)−cos(x)=sin(x)tan(x)sec(x)-cos(x)=sin(x)tan(x) The reciprocal of sec(x)=1/cos(x). sec(x)−cos(x)=sin(x)tan(x)sec(x)-cos(x)=sin(x)tan(x) 1cos(x)−cos(x)=sin(x)tan(x)1cos(x)-cos(x)=sin(x)tan(x) 1−cos2(x)cos(x)=sin(x)tan(x)1-cos2(x)cos(x)=sin(x)tan(x)Use the…
1 educator answer
- MATH
sec(θ)−11−cos(θ)=sec(θ)sec(θ)-11-cos(θ)=sec(θ) Verfiy the identity.
Verify the identity: sec(θ)−11−cos(θ)=sec(θ)sec(θ)-11-cos(θ)=sec(θ) Use the reciprocal identity cos(θ)=1sec(θ)cos(θ)=1sec(θ) sec(θ)−11−cos(θ)=sec(θ)sec(θ)-11-cos(θ)=sec(θ)…
1 educator answer
- MATH
cot(x)sec(x)=csc(x)−sin(x)cot(x)sec(x)=csc(x)-sin(x) Verfiy the identity.
Verify cot(x)/sec(x)=csc(x)-sin(x): Working from the left side, we show that it is equivalent to the right side: cot(x)/sec(x) =cos(x)sin(x)1cos(x)=cos(x)sin(x)1cos(x) =cos2(x)sin(x)=cos2(x)sin(x)…
1 educator answer
- MATH
Verify the identity. sec6(x)(sec(x)tan(x))−sec4(x)(sec(x)tan(x))=sec5(x)tan3(x)sec6(x)(sec(x)tan(x))-sec4(x)(sec(x)tan(x))=sec5(x)tan3(x)Factor out the GCF sec4(x)(sec(x)tan(x))sec4(x)(sec(x)tan(x)) sec4(x)(sec(x)tan(x))[sec2(x)−1]=sec5(x)tan3(x)sec4(x)(sec(x)tan(x))[sec2(x)-1]=sec5(x)tan3(x) Use the…
1 educator answer
- MATH
sin12xcosx−sin52xcosx=cos3(x)sin(x)−−−−−√sin12xcosx-sin52xcosx=cos3(x)sin(x) Verify the identity.
Verify the identity. sin12(x)cos(x)−sin52(x)cos(x)=cos3(x)sin(x)−−−−−√sin12(x)cos(x)-sin52(x)cos(x)=cos3(x)sin(x) Factor out the GCF sin12(x)cos(x).sin12(x)cos(x). sin12(x)cos(x)[1−sin2(x)]=cos3(x)sin(x)−−−−−√sin12(x)cos(x)[1-sin2(x)]=cos3(x)sin(x) Use the pythagorean…
1 educator answer
- MATH
1tan(β)+tan(β)=sec2(β)tan(β)1tan(β)+tan(β)=sec2(β)tan(β) Verfiy the identity.
Verify the identity: 1tan(β)+tan(β)=sec2(β)tan(β)1tan(β)+tan(β)=sec2(β)tan(β) 1+tan2(β)tan(β)=sec2(β)tan(β)1+tan2(β)tan(β)=sec2(β)tan(β) Use the pythagorean identity 1+tan2(β)=sec2(β).1+tan2(β)=sec2(β)….
1 educator answer
- MATH
cot2(t)csc(t)=1−sin2(t)sin(t)cot2(t)csc(t)=1-sin2(t)sin(t) Verfiy the identity.
cot(t)=cos(t)sin(t),cot(t)=cos(t)sin(t), csc(t)=1sin(t).csc(t)=1sin(t). So cot2(t)csc(t)=cos2(t)sin2(t)⋅⎛⎝11sin(t)⎞⎠=cos2(t)sin2(t)⋅sin(t)=cos2(t)sin(t),cot2(t)csc(t)=cos2(t)sin2(t)⋅(11sin(t))=cos2(t)sin2(t)⋅sin(t)=cos2(t)sin(t),which is the same as the right part…
1 educator answer
- MATH
cot3(t)csc(t)=cos(t)(csc2(t)−1)cot3(t)csc(t)=cos(t)(csc2(t)-1) Verfiy the identity.
You need to remember that 1csct=sint1csct=sint , hence, replacing sintsint for 1csct1csct to the left side, yields: sint⋅cot3t=(cost)⋅(csc2t−1)sint⋅cot3t=(cost)⋅(csc2t-1)You need to replace cos3tsin3tcos3tsin3t…
1 educator answer
- MATH
tan2(θ)sec(θ)=sin(θ)tan(θ)tan2(θ)sec(θ)=sin(θ)tan(θ) Verfiy the identity.
L.H.S tan2(θ)sec(θ)=tan2(θ)⋅cos(θ)=tan(θ)⋅cos(θ)⋅{tan(θ)}=tan2(θ)sec(θ)=tan2(θ)⋅cos(θ)=tan(θ)⋅cos(θ)⋅{tan(θ)}= tan(θ)⋅cos(θ)⋅{sin(θ)cos(θ)}=tan(θ)⋅sin(θ)=tan(θ)⋅cos(θ)⋅{sin(θ)cos(θ)}=tan(θ)⋅sin(θ)= R.H.S
1 educator answer
- MATH
sin2(α)−sin4(α)=cos2(α)−cos4(α)sin2(α)-sin4(α)=cos2(α)-cos4(α) Verfiy the identity.
Verify: sin2(α)−sin4(α)=cos2(α)−cos4(α)sin2(α)-sin4(α)=cos2(α)-cos4(α) Use the pythagorean identity sin2(α)+cos2(α)=1sin2(α)+cos2(α)=1 if sin2(α)sin2(α) is isolated the pythagorean identity is…
1 educator answer
- MATH
cos2(β)−sin2(β)=1−2sin2(β)cos2(β)-sin2(β)=1-2sin2(β) Verfiy the identity.
Verify cos2(β)−sin2(β)=1−2sin2(β)cos2(β)-sin2(β)=1-2sin2(β) Working from the left side, we show that it is equivalent to the right side: cos2(β)−sin2(β)cos2(β)-sin2(β) =(1−sin2(β))−sin2(β)=(1-sin2(β))-sin2(β)…
1 educator answer
- MATH
cos2(β)−sin2(β)=2cos2(β)−1cos2(β)-sin2(β)=2cos2(β)-1 Verfiy the identity.
Verify the identity: cos2(β)−sin2(β)=2cos2(β)−1cos2(β)-sin2(β)=2cos2(β)-1 Use the pythagorean identity sin2(β)+cos2(β)=1.sin2(β)+cos2(β)=1. If sin2(β)sin2(β) is isolated the pythagorean identity would be…
1 educator answer
- MATH
(1+sin(α))(1−sin(α))=cos2(α)(1+sin(α))(1-sin(α))=cos2(α) Verfiy the identity.
First, (1−x)⋅(1+x)=1−x2.(1-x)⋅(1+x)=1-x2. So the left part is 1−sin2(α),1-sin2(α),which is obviously equal to cos2(α).cos2(α).
1 educator answer
- MATH
cos(x)+sin(x)tan(x)=sec(x)cos(x)+sin(x)tan(x)=sec(x) Verfiy the identity.
Verify cos(x)+sin(x)tan(x)=sec(x)cos(x)+sin(x)tan(x)=sec(x) : cos(x)+sin(x)tan(x)cos(x)+sin(x)tan(x) =cos(x)+sin(x)⋅sin(x)cos(x)=cos(x)+sin(x)⋅sin(x)cos(x) =cos(x)+sin2(x)cos(x)=cos(x)+sin2(x)cos(x) =cos2(x)+sin2(x)cos(x)=cos2(x)+sin2(x)cos(x) =1cos(x)=1cos(x) =sec(x)=sec(x) as required.
1 educator answer
- MATH
cot2(y)(sec2(y)−1)=1cot2(y)(sec2(y)-1)=1 Verfiy the identity.
Verify the identity: cot2(y)[sec2(y)−1]=1cot2(y)[sec2(y)-1]=1 Use the pythagorean identity 1+tan2(y)=sec2(y).1+tan2(y)=sec2(y). If tan2(y)tan2(y) is isolated the identity would be tan2(y)=sec2(y)−1.tan2(y)=sec2(y)-1. cot2(y)[sec2(y)−1]=1cot2(y)[sec2(y)-1]=1…
1 educator answer
- MATH
sec(y)cos(y)=1sec(y)cos(y)=1 Verfiy the identity.
By definition, sec(y)=1cos(y).sec(y)=1cos(y). Therefore sec(y)⋅cos(y)=[1cos(y)]⋅cos(y)=1sec(y)⋅cos(y)=[1cos(y)]⋅cos(y)=1 , QED.
1 educator answer
- MATH
You need to remember how Newton’s method is used, to evaluate the roots of a transcendent equation. xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn) , where xnxn is the approximate solution to the equation…
1 educator answer
- MATH
4(e−x2)sin(x)=x2−x+14(e-x2)sin(x)=x2-x+1 Use Newton’s method to find all roots of the equation…
4(e−x2)sin(x)=x2−x+14(e-x2)sin(x)=x2-x+1 f(x)=4(e−x2)sin(x)−x2+x−1=0f(x)=4(e-x2)sin(x)-x2+x-1=0 To solve equation using Newton’s method apply the formula, xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn)…
1 educator answer
- MATH
cos(x2−x)=x4cos(x2-x)=x4 Use Newton’s method to find all roots of the equation correct to eight…
cos(x2−x)=x4cos(x2-x)=x4 Set the left side equal to zero. 0=x4−cos(x2−x)0=x4-cos(x2-x) To solve using Newton’s method, apply the formula: xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn) Let the function of the given equation…
1 educator answer
- MATH
xx2+1=1−x−−−−−√xx2+1=1-x Use Newton’s method to find all roots of the equation correct to…
xx2+1=1−x−−−−−√xx2+1=1-x f(x)=xx2+1−1−x−−−−−√=0f(x)=xx2+1-1-x=0 f'(x)=(x2+1)−x(2x)(x2+1)2−(12)(1−x)−12(−1)f′(x)=(x2+1)-x(2x)(x2+1)2-(12)(1-x)-12(-1) f'(x)=1−x2(x2+1)2+121−x−−−−−√f′(x)=1-x2(x2+1)2+121-x See the attached graph. From the graph the curve…
1 educator answer
- MATH
x5−3×4+x3−x2−x+6=0x5-3×4+x3-x2-x+6=0 Use Newton’s method to find all roots of the equation…
x5−3×4+x3−x2−x+6=0x5-3×4+x3-x2-x+6=0 To solve this, using Newton’s method, apply the formula: xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn) Let the function be: f(x)=x5−3×4+x3−x2−x+6f(x)=x5-3×4+x3-x2-x+6 Then, take its…
1 educator answer
- MATH
x6−x5−6×4−x2+x+10=0x6-x5-6×4-x2+x+10=0 Use Newton’s method to find all roots of the equation…
f(x)=x6−x5−6×4−x2+x+10f(x)=x6-x5-6×4-x2+x+10 f'(x)=6×5−5×4−24×3−2x+1f′(x)=6×5-5×4-24×3-2x+1 xn+1=xn−(xn)6−(xn)5−6(xn)4−(xn)2+xn+106(xn)5−5(xn)4−24(xn)3−2(xn)+1xn+1=xn-(xn)6-(xn)5-6(xn)4-(xn)2+xn+106(xn)5-5(xn)4-24(xn)3-2(xn)+1 See the attached graph. From the graph the…
1 educator answer
- MATH
sin(x)=x2−2sin(x)=x2-2 Use Newton’s method to find all roots of the equation correct to six…
sin(x)=x2−2sin(x)=x2-2 f(x)=x2−2−sin(x)=0f(x)=x2-2-sin(x)=0 f'(x)=2x−cos(x)f′(x)=2x-cos(x) See the attached graph. From the graph, the curve of the function intersects the x-axis at ≈≈ -1.05 and 1.70. These can be used as initial…
1 educator answer
- MATH
x3=tan−1(x)x3=tan-1(x) Use Newton’s method to find all roots of the equation correct to six…
x3=tan−1(x)x3=tan-1(x) f(x)=x3−tan−1(x)=0f(x)=x3-tan-1(x)=0 f'(x)=3×2−(1×2+1)f′(x)=3×2-(1×2+1) To solve using Newton’s method apply the formula, xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn) Plug in f(x) and f'(x) in the formula…
1 educator answer
- MATH
1x=1+x31x=1+x3 Use Newton’s method to find all roots of the equation correct to six decimal…
1x=1+x31x=1+x3 Set the left side equal to zero. 0=1+x3−1×0=1+x3-1x To solve this using Newton’s method, apply the formula: xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn)Let the function be: f(x)=1+x3−1xf(x)=1+x3-1x Take…
1 educator answer
- MATH
(x−2)2=ln(x)(x-2)2=ln(x) Use Newton’s method to find all roots of the equation correct to six…
(x−2)2=ln(x)(x-2)2=ln(x) f(x)=(x−2)2−ln(x)=0f(x)=(x-2)2-ln(x)=0 f'(x)=2(x−2)−1xf′(x)=2(x-2)-1x See the attached graph. The curve of the function intersects the x-axis at x ≈≈ 1.4 and 3. These can be used as initial approximates….
1 educator answer
- MATH
x+1−−−−−√=x2−xx+1=x2-x Use Newton’s method to find all roots of the equation correct to six…
x+1−−−−−√=x2−xx+1=x2-x Set the left side equal to zero. 0=x2−x−x−1−−−−−√0=x2-x-x-1 To solve using Newton’s method, apply the formula: xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn) Let the function f(x) be:…
1 educator answer
- MATH
3cos(x)=x+13cos(x)=x+1 Use Newton’s method to find all roots of the equation correct to six…
3cos(x)=x+13cos(x)=x+1 f(x)=x+1−3cos(x)=0f(x)=x+1-3cos(x)=0 To solve using Newton’s method apply the formula, xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn) f'(x)=1+3sin(x)f′(x)=1+3sin(x) Plug in f(x) and f'(x) in the formula,…
1 educator answer
- MATH
100−−−√100100100 Use Newton’s method to approximate the given number correct to eight…
Newton’s method for the equation f(x)=0f(x)=0 is given by xn+1=xn−f(xn)f'(xn)xn+1=xn-f(xn)f′(xn) where xnxn is the nth iteration. In this case, we need to consider the number (100)1100(100)1100 as…
1 educator answer