f(t)=5−t−−−−√f(t)=5-t Find the derivative of the function.

f(t)=5−t−−−−√f(t)=5-t Find the derivative of the function.

  • MATH

g(θ)=sec((12)θ)tan((12)θ)g(θ)=sec((12)θ)tan((12)θ) Find the derivative of the function.

Given the function g(θ)=sec(θ2)tan(θ2)g(θ)=sec(θ2)tan(θ2) . We have to find its derivative. Here we will apply the product rule i.e., ddθ(uv)=uv’+u’vddθ(uv)=uv′+u′v So here we have,

1 educator answer

  • MATH

h(x)=sin(2x)cos(2x)h(x)=sin(2x)cos(2x) Find the derivative of the function.

Note:- 1) 2sin(ax)*cos(ax) = sin2(ax) 2) If y = sinx ; then dy/dx = cosx Now, h(x)=sin(2x)⋅cos(2x)h(x)=sin(2x)⋅cos(2x) or,h(x)=(12)⋅sin(4x)or,h(x)=(12)⋅sin(4x) thus,h'(x)=(42)cos(4x)thus,h′(x)=(42)cos(4x) or,h'(x)=2cos(4x)or,h′(x)=2cos(4x)

1 educator answer

  • MATH

y=cos(1−2x)2y=cos(1-2x)2 Find the derivative of the function.

You need to evaluate the derivative of the function, hence you need to use the chain rule, differentiating first the cosine, then the power function and then the argument, such that:

1 educator answer

  • MATH

y=sin(πx)2y=sin(πx)2 Find the derivative of the function.

You need to use the chain rule to evaluate the derivative of the function, such that: y’=(sin(π⋅x)2)’⋅((π⋅x)2)’⋅(π⋅x)’y′=(sin(π⋅x)2)′⋅((π⋅x)2)′⋅(π⋅x)′ y’=(cos(π⋅x)2)⋅(2(π⋅x))⋅πy′=(cos(π⋅x)2)⋅(2(π⋅x))⋅π y’=2π2⋅x(cos(π⋅x)2)y′=2π2⋅x(cos(π⋅x)2)Hence,…

1 educator answer

  • MATH

h(x)=sec(x2)h(x)=sec(x2) Find the derivative of the function.

You need to use the chain rule to evaluate the derivative of the function, such that: h'(x)=(sec(x)2)’⋅((x)2)’h′(x)=(sec(x)2)′⋅((x)2)′ h'(x)=2x(sec(x)2)⋅(tan(x)2)h′(x)=2x(sec(x)2)⋅(tan(x)2) h'(x)=2x(sec(x)2)⋅(tan(x)2)h′(x)=2x(sec(x)2)⋅(tan(x)2) Hence,…

1 educator answer

  • MATH

g(x)=5tan(3x)g(x)=5tan(3x) Find the derivative of the function.

You need to use the chain rule to evaluate the derivative of the function, such that: g'(x)=(5tan(3x))’⋅(3x)’g′(x)=(5tan(3x))′⋅(3x)′ g'(x)=(5cos2(3x))⋅3g′(x)=(5cos2(3x))⋅3 g'(x)=(15cos2(3x))g′(x)=(15cos2(3x)) Hence, evaluating the…

1 educator answer

  • MATH

y=sin(πx)y=sin(πx) Find the derivative of the function.

Given: y=sin(πx)y=sin(πx) To find the derivative of the function use the chain rule. y’=πcos(πx)y′=πcos(πx)

1 educator answer

  • MATH

y=cos(4x)y=cos(4x) Find the derivative of the function.

Given: y=cos(4x)y=cos(4x) To find the derivative of the function use the chain rule. y’=−4sin(4x)y′=-4sin(4x)

1 educator answer

  • MATH

g(x)=(2+(x2+1)4)3g(x)=(2+(x2+1)4)3 Find the derivative of the function.

g(x)=(2+(x2+1)4)3g(x)=(2+(x2+1)4)3 g'(x)=[3(2+(x2+1)4)2]⋅[4(x2+1)3]⋅[2x]g′(x)=[3(2+(x2+1)4)2]⋅[4(x2+1)3]⋅[2x] or,g'(x)=24x(x2+1)3[2+(x2+1)4]2or,g′(x)=24x(x2+1)3[2+(x2+1)4]2

1 educator answer

  • MATH

f(x)=((x2+3)5+x)2f(x)=((x2+3)5+x)2 Find the derivative of the function.

You need to find derivative of the function using the chain rule: f'(x)=(((x2+3)5+x)2)’⋅((x2+3)5+x)’f′(x)=(((x2+3)5+x)2)′⋅((x2+3)5+x)′ f'(x)=(2((x2+3)5+x))⋅(5(x2+3)4⋅(x2+3)’+1)f′(x)=(2((x2+3)5+x))⋅(5(x2+3)4⋅(x2+3)′+1)

1 educator answer

  • MATH

g(x)=(3×2−22x+3)3g(x)=(3×2-22x+3)3 Find the derivative of the function.

Given g(x)=(3×2−22x+3)3g(x)=(3×2-22x+3)3 Find the derivative using the Quotient Rule within the Chain Rule. g'(x)=3(3×2−22x+3)2[(2x+3)(6x)−(3×2−2)(2)(2x+3)4]g′(x)=3(3×2-22x+3)2[(2x+3)(6x)-(3×2-2)(2)(2x+3)4]…

1 educator answer

  • MATH

f(v)=(1−2v1+v)3f(v)=(1-2v1+v)3 Find the derivative of the function.

Given f(v)=(1−2v1+v)3f(v)=(1-2v1+v)3 Find the derivative using the Quotient Rule within the Chain Rule. f'(v)=3(1−2v1+v)2[(1+v)(−2)−(1−2v)(1)(1+v)2]f′(v)=3(1-2v1+v)2[(1+v)(-2)-(1-2v)(1)(1+v)2] f'(v)=3(1−2v)2(−2−2v−1+2v)(1+v)4f′(v)=3(1-2v)2(-2-2v-1+2v)(1+v)4…

1 educator answer

  • MATH

h(t)=(t2t3+2)2h(t)=(t2t3+2)2 Find the derivative of the function.

Given: h(t)=(t2t3+2)2h(t)=(t2t3+2)2 Find the derivative of the function by using the Quotient Rule within the Chain Rule. h'(t)=2[t2t3+2][(t3+2)(2t)−(t2)(3t2)(t3+2)2]h′(t)=2[t2t3+2][(t3+2)(2t)-(t2)(3t2)(t3+2)2]…

1 educator answer

  • MATH

g(x)=(x+5×2+2)2g(x)=(x+5×2+2)2 Find the derivative of the function.

Given: g(x)=(x+5×2+2)2g(x)=(x+5×2+2)2 Find the derivative by using the Quotient Rule within the Chain Rule. g'(x)=2[x+5×2+2][(x2+2)(1)−(x+5)(2x)(x2+2)2]g′(x)=2[x+5×2+2][(x2+2)(1)-(x+5)(2x)(x2+2)2]…

1 educator answer

  • MATH

y=xx4+4−−−−−√y=xx4+4 Find the derivative of the function.

You need to find derivative of the function using quotient rule: y’=x’⋅(x4+4−−−−−√)−x⋅(x4+4−−−−−√)’x4+4y′=x′⋅(x4+4)-x⋅(x4+4)′x4+4 y’=1⋅(x4+4−−−−−√)−x⋅(x4+4)’2×4+4√x4+4y′=1⋅(x4+4)-x⋅(x4+4)′2×4+4×4+4

1 educator answer

  • MATH

y=xx2+1−−−−−√y=xx2+1 Find the derivative of the function.

Given y=xx2+1−−−−−√y=xx2+1 Rewrite the function as y=x(x2+1)−12y=x(x2+1)-12 Find the derivative using the Product Rule and Chain Rule. y’=x[(−12)(x2+1)−32]+(x2+1)−12(1)y′=x[(-12)(x2+1)-32]+(x2+1)-12(1)…

1 educator answer

  • MATH

y=(12)(x2)16−x2−−−−−−√y=(12)(x2)16-x2 Find the derivative of the function.

You need to use the product and chain rules to evaluate the derivative of the function, such that: f'(x)=(12)(x2)'(16−x2−−−−−−√)+(12)(x2)(16−x2−−−−−−√)’f′(x)=(12)(x2)′(16-x2)+(12)(x2)(16-x2)′

1 educator answer

  • MATH

y=x1−x2−−−−−√y=x1-x2 Find the derivative of the function.

You need to use the product and chain rules to evaluate the derivative of the function, such that: f'(x)=(x)'(1−x2−−−−−√)+(x)(1−x2−−−−−√)’f′(x)=(x)′(1-x2)+(x)(1-x2)′

1 educator answer

  • MATH

f(x)=x(2x−5)3f(x)=x(2x-5)3 Find the derivative of the function.

You need to use the product and chain rules to evaluate the derivative of the function, such that: f'(x)=(x)'(2x−5)3+(x)((2x−5)3)’f′(x)=(x)′(2x-5)3+(x)((2x-5)3)′ f'(x)=(2x−5)3+3x((2x−5)2)⋅(2x−5)’f′(x)=(2x-5)3+3x((2x-5)2)⋅(2x-5)′…

1 educator answer

  • MATH

f(x)=(x2)(x−2)4f(x)=(x2)(x-2)4 Find the derivative of the function.

You need to use the product and chain rules to evaluate the derivative of the function, such that: f'(x)=(x2)'(x−2)4+(x2)((x−2)4)’f′(x)=(x2)′(x-2)4+(x2)((x-2)4)′ f'(x)=(2x)(x−2)4+4(x2)((x−2)3)⋅(x−2)’f′(x)=(2x)(x-2)4+4(x2)((x-2)3)⋅(x-2)′…

1 educator answer

  • MATH

g(t)=1t2−2−−−−−√g(t)=1t2-2 Find the derivative of the function.

g(t)=1t2−2−−−−−√g(t)=1t2-2  or,g(t)=(t2−2)−12or,g(t)=(t2-2)-12 Thus,g'(t)=−(12)⋅(2t)⋅(t2−2)−32Thus,g′(t)=-(12)⋅(2t)⋅(t2-2)-32 or,g'(t)=−t⋅(t2−2)−32or,g′(t)=-t⋅(t2-2)-32 or,g'(t)=−t(t2−2)32or,g′(t)=-t(t2-2)32

1 educator answer

  • MATH

y=13x+5−−−−−−√y=13x+5 Find the derivative of the function.

y=13x+5−−−−−−√=(3x+5)−12y=13x+5=(3x+5)-12 thus,dydx=y’=−(12)⋅{(3x+5)−32}⋅3thus,dydx=y′=-(12)⋅{(3x+5)-32}⋅3 or,dydx=−(32)⋅(3x+5)−32or,dydx=-(32)⋅(3x+5)-32 or,dydx=y’=−(32)⋅{1(3x+5)32}or,dydx=y′=-(32)⋅{1(3x+5)32}

1 educator answer

  • MATH

y=−(3(t−2)4)y=-(3(t-2)4) Find the derivative of the function.

Given: y=−(3(t−2)4)y=-(3(t-2)4) Rewrite the equation as y=−3(t−2)−4y=-3(t-2)-4 Find the derivative using the Chain Rule. y’=12(t−2)−5y′=12(t-2)-5 y’=12(t−2)5y′=12(t-2)5

1 educator answer

  • MATH

f(t)=(1t−3)2f(t)=(1t-3)2 Find the derivative of the function.

f(t)=1(t−3)2f(t)=1(t-3)2 or,f(t)=(t−3)−2or,f(t)=(t-3)-2 Thus,f'(t)=−2(t−3)−3Thus,f′(t)=-2(t-3)-3 or,f'(t)=−2(t−3)3or,f′(t)=-2(t-3)3

1 educator answer

  • MATH

s(t)=14−5t−t2s(t)=14-5t-t2 Find the derivative of the function.

s(t)=14−5t−t2s(t)=14-5t-t2 or,s'(t)=−−5−2t[4−5t−t2]2or,s′(t)=–5-2t[4-5t-t2]2 or,s'(t)=5+2t[4−5t−t2]2or,s′(t)=5+2t[4-5t-t2]2

1 educator answer

  • MATH

y=1x−2y=1x-2 Find the derivative of the function.

Given: y=1x−2y=1x-2 Rewrite the function as y=1(x−2)−1y=1(x-2)-1 Find the derivative using the Chain Rule. y’=−1(x−2)−2y′=-1(x-2)-2 y’=−1(x−2)2y′=-1(x-2)2

1 educator answer

  • MATH

f(x)=12x−5−−−−−−√3f(x)=12x-53 Find the derivative of the function.

Given: f(x)=12x−5−−−−−−√3f(x)=12x-53 Rewrite the function as f(x)=(12x−5)13f(x)=(12x-5)13 Find the derivative by using the Chain Rule. f'(x)=(13)(12x−5)−23(12)f′(x)=(13)(12x-5)-23(12) f'(x)=4(12x−5)−23f′(x)=4(12x-5)-23…

1 educator answer

  • MATH

y=29−x2−−−−−√4y=29-x24 Find the derivative of the function.

Given y=29−x2−−−−−√4y=29-x24 Rewrite the function as y=2(9−x2)14y=2(9-x2)14 Find the derivative using the Chain Rule. y’=(14)(2)(9−x2)−34(−2x)y′=(14)(2)(9-x2)-34(-2x) y’=−1x(9−x2)−34y′=-1x(9-x2)-34 y’=−x(9−x2)34y′=-x(9-x2)34…

1 educator answer

  • MATH

f(x)=x2−4x+2−−−−−−−−−−√f(x)=x2-4x+2 Find the derivative of the function.

Given f(x)=x2−4x+2−−−−−−−−−−√f(x)=x2-4x+2 Rewrite the function as f(x)=(x2−4x+2)12f(x)=(x2-4x+2)12 Find the derivative using the Chain Rule. f'(x)=(12)(x2−4x+2)−12(2x−4)f′(x)=(12)(x2-4x+2)-12(2x-4) f'(x)=(12)2(x−2)(x2−4x+2)12f′(x)=(12)2(x-2)(x2-4x+2)12…

1 educator answer

  • MATH

y=6×2+1−−−−−−√3y=6×2+13 Find the derivative of the function.

Given y=6×2+1−−−−−−√3y=6×2+13 Rewrite the function as y=(6×2+1)13y=(6×2+1)13 Find the derivative using the Chain Rule. y’=(13)(6×2+1)−23(12x)y′=(13)(6×2+1)-23(12x) y’=4x(6×2+1)−23y′=4x(6×2+1)-23 y’=4x(6×2+1)23y′=4x(6×2+1)23…

1 educator answer

  • MATH

g(x)=4−3×2−−−−−−√g(x)=4-3×2 Find the derivative of the function.

2 educator answers

  • MATH

f(t)=5−t−−−−√f(t)=5-t Find the derivative of the function.

f(t)=5−t−−−−√f(t)=5-t f'(t)=125−t−−−−√⋅(−1)f′(t)=125-t⋅(-1) or,f'(t)=−125−t−−−−√or,f′(t)=-125-t   Note:- If y = sqrt(x) ; then dy/dx = 1/{2sqrt(x)}

1 educator answer

  • MATH

f(t)=(9t+2)23f(t)=(9t+2)23 Find the derivative of the function.

f(t)=(9t+2)23f(t)=(9t+2)23 f'(t)=(23)⋅9⋅(9t+2)−13f′(t)=(23)⋅9⋅(9t+2)-13 or,f'(t)=6⋅(9t+2)−13or,f′(t)=6⋅(9t+2)-13

1 educator answer

  • MATH

g(x)=3(4−9x)4g(x)=3(4-9x)4 Find the derivative of the function.

Given: g(x)=3(4−9x)4g(x)=3(4-9x)4 Find the derivative of the function by using the Chain Rule. g'(x)=12(4−9x)3(−9)g′(x)=12(4-9x)3(-9) g'(x)=−108(4−9x)3g′(x)=-108(4-9x)3

1 educator answer

  • MATH

y=5(2−x3)4y=5(2-x3)4 Find the derivative of the function.

Given: y=5(2−x3)4y=5(2-x3)4 To find the derivative of the function use the Chain Rule. y’=20(2−x3)3(−3×2)y′=20(2-x3)3(-3×2) y’=−60×2(2−x3)3y′=-60×2(2-x3)3

1 educator answer

  • MATH

y=(4x−1)3y=(4x-1)3 Find the derivative of the function.

Given: y=(4x−1)3y=(4x-1)3 To find the derivative of the function use the Chain Rule. y’=3(4x−1)2(4)y′=3(4x-1)2(4) y’=12(4x−1)2y′=12(4x-1)2

1 educator answer

  • MATH

f4(x)=2x+1,f6(x)f4(x)=2x+1,f6(x) Find the given higher-order derivative.

Given:- f””(x)=2x+1f′′′′(x)=2x+1 Thus,f””'(x)=2Thus,f′′′′′(x)=2 andf”””(x)=0andf′′′′′′(x)=0

1 educator answer

  • MATH

f”'(x)=2x−−√,f4(x)f′′′(x)=2x,f4(x) Find the given higher-order derivative.

Given f”'(x)=2x−−√f′′′(x)=2x Thus,f””(x)=22x−−√Thus,f′′′′(x)=22x or,f””(x)=1x−−√or,f′′′′(x)=1x

1 educator answer

  • MATH

f”(x)=2−(2x),f”'(x)f′′(x)=2-(2x),f′′′(x) Find the given higher-order derivative.

Given: f”(x)=2−(2x)f′′(x)=2-(2x) Rewrite the function as f”(x)=2−2x−1f′′(x)=2-2x-1 f”'(x)=2x−2f′′′(x)=2x-2 f”'(x)=2x2f′′′(x)=2×2

1 educator answer

  • MATH

f'(x)=x2,f”(x)f′(x)=x2,f′′(x) Find the given higher-order derivative.

Given: f'(x)=x2f′(x)=x2 f”(x)=2xf′′(x)=2x

1 educator answer

  • MATH

f(x)=sec(x)f(x)=sec(x) Find the second derivative of the function.

f(x)=sec(x)f(x)=sec(x) f'(x)=sec(x)tan(x)f′(x)=sec(x)tan(x) f”(x)=sec(x)⋅sec2(x)+tan(x)⋅sec(x)tan(x)f′′(x)=sec(x)⋅sec2(x)+tan(x)⋅sec(x)tan(x) or,f”(x)=sec(x)[sec2(x)+tan2(x)]or,f′′(x)=sec(x)[sec2(x)+tan2(x)]

1 educator answer

  • MATH

f(x)=xsin(x)f(x)=xsin(x) Find the second derivative of the function.

f(x)=xsin(x)f(x)=xsin(x) f'(x)=xcos(x)+sin(x)f′(x)=xcos(x)+sin(x) f”(x)=−xsin(x)+cos(x)+cos(x)f′′(x)=-xsin(x)+cos(x)+cos(x) or,f”(x)=2cos(x)−xsin(x)or,f′′(x)=2cos(x)-xsin(x)

1 educator answer

  • MATH

f(x)=x2+3xx−4f(x)=x2+3xx-4 Find the second derivative of the function.

f(x)=x2+3xx−4f(x)=x2+3xx-4 f'(x)=(x−4)(2x+3)−(x2+3x)(x−4)2f′(x)=(x-4)(2x+3)-(x2+3x)(x-4)2 or,f'(x)=2×2+3x−8x−12−x2−3x(x−4)2or,f′(x)=2×2+3x-8x-12-x2-3x(x-4)2 or,f'(x)=x2−8x−12(x−4)2or,f′(x)=x2-8x-12(x-4)2 Now,Now,

1 educator answer

  • MATH

f(x)=xx−1f(x)=xx-1 Find the second derivative of the function.

f(x)=xx−1f(x)=xx-1 f'(x)=(x−1)−x(x−1)2f′(x)=(x-1)-x(x-1)2 or,f'(x)=−1(x−1)2or,f′(x)=-1(x-1)2f”(x)=2(x−1)3f′′(x)=2(x-1)3 or,f”(x)=2(x−1)−3or,f′′(x)=2(x-1)-3

1 educator answer

  • MATH

f(x)=x2+3x−3f(x)=x2+3x-3 Find the second derivative of the function.

You need to evaluate the first derivative of the function, using the quotient rule for 3x−3:3x-3: f'(x)=2x−9x2x6f′(x)=2x-9x2x6 You need to simplify by x2:x2: f'(x)=2x−9x4f′(x)=2x-9×4 You need to…

1 educator answer

  • MATH

f(x)=4x32f(x)=4×32 Find the second derivative of the function.

Note:- If x = x^n ; where n = constant ; then dy/dx = n*x^(n-1) Now, f(x)=4x32f(x)=4×32 f'(x)=4⋅(32)⋅x12f′(x)=4⋅(32)⋅x12 or,f'(x)=6⋅x12or,f′(x)=6⋅x12 f”(x)=6⋅(12)⋅x−12f′′(x)=6⋅(12)⋅x-12 or,f”(x)=3⋅x−12or,f′′(x)=3⋅x-12

1 educator answer

  • MATH

f(x)=4×5−2×3+5x2f(x)=4×5-2×3+5×2 Find the second derivative of the function.

You need to evaluate the first derivative of the function: f'(x)=(4×5−2×3+5×2)’f′(x)=(4×5-2×3+5×2)′ f'(x)=(4×5)’−(2×3)’+(5×2)’f′(x)=(4×5)′-(2×3)′+(5×2)′ f'(x)=20×4−6×2+10xf′(x)=20×4-6×2+10xYou need to evaluate the second derivative of…

1 educator answer

  • MATH

f(x)=x4+2×3−3×2−xf(x)=x4+2×3-3×2-x Find the second derivative of the function.

Note:- If y = x^n ; where n = constant ; then dy/dx = n*x^(n-1) If y = k ; where k = constant ; then dy/dx = 0 Now, f(x)=x4+2×3−3×2−xf(x)=x4+2×3-3×2-x f'(x)=4×3+6×2−6x−1f′(x)=4×3+6×2-6x-1

1 educator answer

  • MATH

f(x)=x−4×2−7f(x)=x-4×2-7 Determine the point(s) at which the graph of the function has a…

Given: f(x)=x−4×2−7f(x)=x-4×2-7 Find the derivative of the function using the Quotient Rule. Set the derivative equal to zero and solve for the critical x value(s). When the derivative is zero the…

1 educator answer

  • MATH

f(x)=x2x−1f(x)=x2x-1 Determine the point(s) at which the graph of the function has a…

Given f(x)=x2x−1f(x)=x2x-1 Find the derivative of the function using the Quotient Rule. Set the derivative equal to 0 and solve for the x value(s). When the derivative is equal to zero, the slope of…

1 educator answer


Comments are closed.