h(t)=2(cot(πt+2))2h(t)=2(cot(πt+2))2 Find the derivative of the function.
- MATH
4cos(x)sin(y)=14cos(x)sin(y)=1 Find dydxdydx by implicit differentiation.
4cos(x)⋅sin(y)=14cos(x)⋅sin(y)=1 Differentiating both sides w.r.t ‘x’ we get −4sin(x)sin(y)+4cos(x)cos(y)(dydx)=0-4sin(x)sin(y)+4cos(x)cos(y)(dydx)=0 or,dydx=sin(x)sin(y)cos(x)cos(y)or,dydx=sin(x)sin(y)cos(x)cos(y) or,dydx=y’=tan(x)⋅tan(y)or,dydx=y′=tan(x)⋅tan(y)
1 educator answer
- MATH
x3−3(x2)y+2x(y2)=12×3-3(x2)y+2x(y2)=12 Find dydxdydx by implicit differentiation.
x3−3x2y+2xy2=12×3-3x2y+2xy2=12 Differentiating both sides with respect to x, 3×2−3(x2dydx+yddx(x2))+2(x(2y)dydx+y2)=03×2-3(x2dydx+yddx(x2))+2(x(2y)dydx+y2)=0 3×2−3(x2dydx+y(2x))+4xydydx+2y2=03×2-3(x2dydx+y(2x))+4xydydx+2y2=0 3×2−3x2dydx−6xy+4xydydx+2y2=03×2-3x2dydx-6xy+4xydydx+2y2=0…
1 educator answer
- MATH
xy−−√=(x2)y+1xy=(x2)y+1 Find dydxdydx by implicit differentiation.
xy−−√=x2y+1xy=x2y+1 Differentiating both sides with respect to x, 12(xy)−12ddx(xy)=x2ddx(y)+yddx(x2)12(xy)-12ddx(xy)=x2ddx(y)+yddx(x2) 12(xy−−√)(xdydx+y)=x2dydx+y(2x)12(xy)(xdydx+y)=x2dydx+y(2x)…
1 educator answer
- MATH
(x3)(y3)−y=x(x3)(y3)-y=x Find dydxdydx by implicit differentiation.
(x3)(y3)−y=x(x3)(y3)-y=x Differentiating both sides with respect to x, ddx(x3y3−y)=ddx(x)ddx(x3y3-y)=ddx(x) x3ddx(y3)+y3ddx(x3)−ddx(y)=1x3ddx(y3)+y3ddx(x3)-ddx(y)=1 x3(3y2dydx)+y3(3×2)−dydx=1×3(3y2dydx)+y3(3×2)-dydx=1 3x3y2dydx+3x2y3−dydx=13x3y2dydx+3x2y3-dydx=1…
1 educator answer
- MATH
(x2)y+(y2)x=−2(x2)y+(y2)x=-2 Find dydxdydx by implicit differentiation.
x2y+y2x=−2x2y+y2x=-2 Differentiating both sides with respect to x, x2ddx(y)+yddx(x2)+y2ddx(x)+xddx(y2)=0x2ddx(y)+yddx(x2)+y2ddx(x)+xddx(y2)=0 x2dydx+y(2x)+y2+x(2y)dydx=0x2dydx+y(2x)+y2+x(2y)dydx=0 x2dydx+2xydydx+2xy+y2=0x2dydx+2xydydx+2xy+y2=0…
1 educator answer
- MATH
x3−xy+y2=7×3-xy+y2=7 Find dydxdydx by implicit differentiation.
Given: x3−xy+y2=7×3-xy+y2=7 3×2−[xdydx+y(1)]+2ydydx=03×2-[xdydx+y(1)]+2ydydx=0 3×2−xdydx−y+2ydydx=03×2-xdydx-y+2ydydx=0 −xdydx+2ydydx=−3×2+y-xdydx+2ydydx=-3×2+y xdydx−2ydydx=3×2−yxdydx-2ydydx=3×2-y dydx(x+2y)=3×2−ydydx(x+2y)=3×2-y dydx=3×2−yx+2ydydx=3×2-yx+2y
1 educator answer
- MATH
2×3+3y3=642×3+3y3=64 Find dydxdydx by implicit differentiation.
2×3+3y3=642×3+3y3=64 Differentiating both sides w.r.t ‘x’ we get 2⋅3⋅x2+3⋅3⋅y2⋅(dydx)=02⋅3⋅x2+3⋅3⋅y2⋅(dydx)=0 or,2×2+3y2(dydx)=0or,2×2+3y2(dydx)=0 or,dydx=−(23)⋅(xy)2or,dydx=-(23)⋅(xy)2
1 educator answer
- MATH
x12+y12=16×12+y12=16 Find dydxdydx by implicit differentiation.
x12+y12=16×12+y12=16 or,(12)x−12+(12)y−12(dydx)=0or,(12)x-12+(12)y-12(dydx)=0 or,dydx=−(xy)−12=−(yx)12or,dydx=-(xy)-12=-(yx)12
1 educator answer
- MATH
x2−y2=25×2-y2=25 Find dydxdydx by implicit differentiation.
Given: x2−y2=25×2-y2=25 2x−2ydydx=02x-2ydydx=0 −2ydydx=−2x-2ydydx=-2x dydx=−2x−2ydydx=-2x-2y dydx=xydydx=xy
1 educator answer
- MATH
x2+y2=9×2+y2=9 Find dydxdydx by implicit differentiation.
Given: x2+y2=9×2+y2=9 2x+2ydydx=02x+2ydydx=0 2ydydx=−2x2ydydx=-2x dydx=−2x2ydydx=-2x2y dydx=−xydydx=-xy
1 educator answer
- MATH
g(t)=tan(2t),((π6),3–√)g(t)=tan(2t),((π6),3) Evaluate the second derivative of the function at the…
g(t)=tan(2t)g(t)=tan(2t) differentiating with respect to t, g'(t)=sec2(2t)⋅2g′(t)=sec2(2t)⋅2 differentiating again, g”(t)=2(2sec(2t))(sec(2t)tan(2t)⋅2)g′′(t)=2(2sec(2t))(sec(2t)tan(2t)⋅2) g”(t)=8tan(2t)sec2(2t)g′′(t)=8tan(2t)sec2(2t) Now to evaluate the g”(t)…
2 educator answers
- MATH
We will need to use chain rule (f(g(x)))’=f'(g(x))⋅g'(x)(f(g(x)))′=f′(g(x))⋅g′(x) First we find the first derivative. f'(x)=−sin(x2)⋅2x=−2xsin(x2)f′(x)=-sin(x2)⋅2x=-2xsin(x2) Now we calculate second derivative, but for that we will…
1 educator answer
- MATH
f(x)=1x+4−−−−−√,(0,(12))f(x)=1x+4,(0,(12)) Evaluate the second derivative of the function at the…
You need to evaluate the second derivative of the function, hence, you need first to evaluate the first derivative, using the quotient and the chain rules, such that:
1 educator answer
- MATH
You need first to evaluate the first derivative of the function, using chain rule, such that: h'(x)=((19)(3x+1)3)’h′(x)=((19)(3x+1)3)′ h'(x)=((39)(3x+1)2)⋅(3x+1)’h′(x)=((39)(3x+1)2)⋅(3x+1)′ h'(x)=((13)(3x+1)2)⋅(3)h′(x)=((13)(3x+1)2)⋅(3)…
1 educator answer
- MATH
f(x)=(sec(πx))2f(x)=(sec(πx))2 Find the second derivative of the function.
f(x)=(sec(πx))2=sec2(πx)f(x)=(sec(πx))2=sec2(πx) f'(x)=2πsec(πx)⋅tan(πx)⋅sec(πx)=2πsec2(πx)⋅tan(πx)f′(x)=2πsec(πx)⋅tan(πx)⋅sec(πx)=2πsec2(πx)⋅tan(πx)f”(x)=2π2⋅sec4(πx)+4π2sec2(πx)⋅tan2(πx)f′′(x)=2π2⋅sec4(πx)+4π2sec2(πx)⋅tan2(πx)
1 educator answer
- MATH
f(x)=sin(x2)f(x)=sin(x2) Find the second derivative of the function.
Note:- 1) If y = sinx ; then dy/dx = cosx 2) If y = x^n ; where n = constant ; then dy/dx = n*x^(n-1) Now, f(x)=sin(x2)f(x)=sin(x2) f'(x)=2x⋅cos(x2)f′(x)=2x⋅cos(x2) f”(x)=2⋅cos(x2)−4(x2)⋅sin(x2)f′′(x)=2⋅cos(x2)-4(x2)⋅sin(x2)
1 educator answer
- MATH
f(x)=8(x−2)2f(x)=8(x-2)2 Find the second derivative of the function.
Note:- If y = (ax+b)^n ; where a,b,n are constants ; then dy/dx = na*x^(n-1) Now, y=8(x−2)2y=8(x-2)2 or,y=8⋅(x−2)−2or,y=8⋅(x-2)-2 or,y=−16(x−2)−3or,y=-16(x-2)-3 or,y=48(x−2)−4or,y=48(x-2)-4 or,y=48(x−2)4or,y=48(x-2)4
1 educator answer
- MATH
f(x)=1x−6f(x)=1x-6 Find the second derivative of the function.
Note:- if y = (ax+b)^n ; where a,b,n are constants ; then dy/dx = an*(ax+b)^(n-1) Now, f(x)=1x−6=(x−6)−1f(x)=1x-6=(x-6)-1 or,f'(x)=−1(x−6)−2or,f′(x)=-1(x-6)-2 or,f”(x)=2(x−6)−3or,f′′(x)=2(x-6)-3 or,f”(x)=2(x−6)3or,f′′(x)=2(x-6)3
1 educator answer
- MATH
f(x)=6(x3+4)3f(x)=6(x3+4)3 Find the second derivative of the function.
Note:- If y = x^n ; where n = constant ; then dy/dx = n*x^(n-1) Now, f(x)=6(x3+4)3f(x)=6(x3+4)3 thus,f'(x)=6⋅3⋅3(x2)⋅(x3+4)2thus,f′(x)=6⋅3⋅3(x2)⋅(x3+4)2 or,f'(x)=54(x2)(x3+4)2or,f′(x)=54(x2)(x3+4)2 Differentiating again w.r.t ‘x’ we…
1 educator answer
- MATH
f(x)=5(2−7x)4f(x)=5(2-7x)4 Find the second derivative of the function.
f(x)=5(2−7x)4f(x)=5(2-7x)4 f'(x)=5⋅4⋅(−7)⋅(2−7x)3f′(x)=5⋅4⋅(-7)⋅(2-7x)3 or,f'(x)=−140(2−7x)3or,f′(x)=-140(2-7x)3 Thus,f”(x)=−140⋅3⋅(−7)⋅(2−7x)2Thus,f′′(x)=-140⋅3⋅(-7)⋅(2-7x)2 or,f”(x)=2940⋅(2−7x)2or,f′′(x)=2940⋅(2-7x)2
1 educator answer
- MATH
You need to find the equation of the tangent line to the given curve, at the point (pi/4,2), using the formula: f(x)−f(π4)=f'(π4)(x−π4)f(x)-f(π4)=f′(π4)(x-π4) You need to notice that f(π4)=2.f(π4)=2. You need…
1 educator answer
- MATH
You need to find the equation of the tangent line to the given curve, at the point (π4,1)(π4,1) , using the formula: f(x)−f(π4)=f'(π4)(x−π4)f(x)-f(π4)=f′(π4)(x-π4) You need to notice that f(π4)=1.f(π4)=1. You…
1 educator answer
- MATH
The function y = cos (3x). The slope of the tangent to the graph of this function at (π4,−2–√2)(π4,-22) is y+2√2x−π4=y'(π4)y+22x-π4=y′(π4) y’=−3⋅sin(3⋅x)y′=-3⋅sin(3⋅x) y'(π4)=−32–√y′(π4)=-32 The…
1 educator answer
- MATH
The function f(x) = sin(2x). The slope of a line tangent to this curve at the point (pi,0) is given by the equation y−0x−π=f'(π)y-0x-π=f′(π) f'(x)=(sin(2x))’f′(x)=(sin(2x))′ = 2*cos(2x) f'(π)=2f′(π)=2…
1 educator answer
- MATH
f(x)=(9−x2)23,(1,4)f(x)=(9-x2)23,(1,4) (a) Find an equation of the tangent line to the graph of f…
The function f(x)=(9−x2)23f(x)=(9-x2)23 . At the point (1, 4) the equation of the tangent to this curve is: y−4x−1=f'(1)y-4x-1=f′(1) f(x)=(9−x2)23f(x)=(9-x2)23
1 educator answer
- MATH
You need to find the equation of the tangent line to the given curve, at the point (-1,1), using the formula: f(x)−f(−1)=f'(−1)(−(−1))f(x)-f(-1)=f′(-1)(-(-1)) You need to put y = f(x) and you need to notice that…
1 educator answer
- MATH
The function f(x)=(13)⋅x⋅x2+5−−−−−√f(x)=(13)⋅x⋅x2+5 . The slope of a line tangent to this curve at x = a is f'(a). The derivative f'(x)=(13)⋅(x⋅x2+5−−−−−√)’f′(x)=(13)⋅(x⋅x2+5)′ =
1 educator answer
- MATH
f(x)=2×2−7−−−−−−√f(x)=2×2-7 Slope of the tangent line is the derivative of the function at that point. f'(x)=(12)(2×2−7)−12(4x)f′(x)=(12)(2×2-7)-12(4x) f'(x)=2x2x2−7−−−−−−√f′(x)=2x2x2-7 Slope of the tangent line (m) at (4,5)…
1 educator answer
- MATH
y=(1x)+cos(x)−−−−−√,(π22π)y=(1x)+cos(x),(π22π) Find and evaluate the derivative of the function at…
Hello! y(x)=(1x)+cos(x)−−−−−√y(x)=(1x)+cos(x) . cos(x) must be >=0 and cos(x) < 0 for π>x>π2π>x>π2 (at the right neighborhood of π2π2 ). So there can be only the left derivative. Check that…
1 educator answer
- MATH
You need to evaluate the derivative of the function, using the chain rule, such that: y’=(26−(sec(4x))3)’⇒y’=−3(sec(4x))2⋅(sec(4x))⋅(tan(4x))⋅(4x)’y′=(26-(sec(4x))3)′⇒y′=-3(sec(4x))2⋅(sec(4x))⋅(tan(4x))⋅(4x)′y’=−12(sec(4x))3⋅(tan(4x))y′=-12(sec(4x))3⋅(tan(4x))…
1 educator answer
- MATH
f(x)=x+42x−5,(9,1)f(x)=x+42x-5,(9,1) Find and evaluate the derivative of the function at the…
You need to evaluate the equation of the tangent line at (9,1), using the formula: f(x) – f(9) = f'(9)(x – 1) Notice that f(9) = 1. You need to evaluate f'(x), using the quotient rule, such that:…
1 educator answer
- MATH
f(t)=3t+2t−1,(0,−2)f(t)=3t+2t-1,(0,-2) Find and evaluate the derivative of the function at the…
First we differentiate the function using the following rule (fg)’=f’g−fg’g2(fg)′=f′g-fg′g2 f'(t)=3(t−1)−(3t+2)⋅1(t−1)2=3t−3−3t−2(t−1)2=−5(t−1)2f′(t)=3(t-1)-(3t+2)⋅1(t-1)2=3t-3-3t-2(t-1)2=-5(t-1)2Now we evaluate the derivative at 0….
2 educator answers
- MATH
You need to evaluate the derivative of the function, using the chain and quotient rules, such that: y’=−2(x2−3x)(x2−3x)'(x2−3x)4⇒y’=−2(x2−3x)(2x−3)(x2−3x)4y′=-2(x2-3x)(x2-3x)′(x2-3x)4⇒y′=-2(x2-3x)(2x-3)(x2-3x)4…
1 educator answer
- MATH
f(x)=5×3−2,(−2,(−12))f(x)=5×3-2,(-2,(-12)) Find and evaluate the derivative of the function at the…
The function f(x) = 5/(x^3 – 2) = 5*(x^3 – 2)^-1. The derivative f'(x) = 5*(x^3 – 2)^-2*-1*3x^2 = (-15x^2)/(x^3 – 2)^2 At x = -2, f'(x) = (-15*4)/(-8 – 2)^2 = -60/100 = -0.6 The equation of the…
1 educator answer
- MATH
You need to evaluate the derivative of the function, using the chain rule, such that: y’=((3×3+4x)15)’⇒y’=((15)(3×3+4x)15−1)(3×3+4x)’y′=((3×3+4x)15)′⇒y′=((15)(3×3+4x)15-1)(3×3+4x)′
1 educator answer
- MATH
y=x2+8x−−−−−−√,(1,3)y=x2+8x,(1,3) Find and evaluate the derivative of the function at the given…
You need to evaluate the derivative of the function, using the chain rule, such that: y’=((x2+8x)12)’⇒y’=((12)(x2+8x)12−1)(x2+8x)’y′=((x2+8x)12)′⇒y′=((12)(x2+8x)12-1)(x2+8x)′
1 educator answer
- MATH
y=cos(sin(tan(πx))−−−−−−−−−−√)y=cos(sin(tan(πx))) Find the derivative of the function.
Given the function y=cos(sin(tan(πx))−−−−−−−−−−√)y=cos(sin(tan(πx))) . We have to find the derivative. Let us begin, dydx=−sin(sin(tan(πx))−−−−−−−−−−√).ddx[sin(tan(πx))−−−−−−−−−−√]−−−−−→(1)dydx=-sin(sin(tan(πx))).ddx[sin(tan(πx))]—–→(1)Now,…
1 educator answer
- MATH
y=sin(tan(2x))y=sin(tan(2x)) Find the derivative of the function.
y=sin(tan(2x))y=sin(tan(2x)) dydx=[dsin(tan(2x))dx]⋅[dtan(2x)dx]⋅[d2xdx]dydx=[dsin(tan(2x))dx]⋅[dtan(2x)dx]⋅[d2xdx] or,dydx=y’=[cos(tan(2x))]⋅[sec2(2x)]⋅2or,dydx=y′=[cos(tan(2x))]⋅[sec2(2x)]⋅2 or,dydx=y’=2sec2(2x)⋅cos(tan(2x))or,dydx=y′=2sec2(2x)⋅cos(tan(2x))
1 educator answer
- MATH
y=sin(x−−√3)+sin(x)−−−−−√3y=sin(x3)+sin(x)3 Find the derivative of the function.
Hello! We have the composite functions, for such a functions [f(g(x))]’=f'(g(x))⋅g'(x).[f(g(x))]′=f′(g(x))⋅g′(x). Also recall that [sin(y)]’=cos(y)[sin(y)]′=cos(y)and [y13]’=(13)⋅y−23.[y13]′=(13)⋅y-23. Let’s start:
1 educator answer
- MATH
y=x−−√+(14)(sin(2x)2)y=x+(14)(sin(2x)2) Find the derivative of the function.
You need to evaluate the derivative of the function, hence you need to use the chain rule, where it is required, such that: y’=(x−−√)’+(14)⋅(sin(2x)2)’⋅((2x)2)’⋅(2x)’y′=(x)′+(14)⋅(sin(2x)2)′⋅((2x)2)′⋅(2x)′
1 educator answer
- MATH
y=3x−5cos((πx)2)y=3x-5cos((πx)2) Find the derivative of the function.
y=3x−5cos((πx)2)y=3x-5cos((πx)2) dydx=y’=3+5[sin((πx)2)]⋅[2πx]⋅πdydx=y′=3+5[sin((πx)2)]⋅[2πx]⋅π or,dydx=y’=3+10(π2)⋅x⋅sin((πx)2)or,dydx=y′=3+10(π2)⋅x⋅sin((πx)2)
1 educator answer
- MATH
f(t)=3(sec(πt−1))2f(t)=3(sec(πt-1))2 Find the derivative of the function.
f(t)=3(sec(πt−1))2f(t)=3(sec(πt-1))2 or,f(t)=3sec2(πt−1)or,f(t)=3sec2(πt-1) thus,f'(t)=6sec(πt−1)⋅[sec(πt−1)⋅tan(πt−1)]⋅πthus,f′(t)=6sec(πt-1)⋅[sec(πt-1)⋅tan(πt-1)]⋅π or,f'(t)=6π⋅sec2(πt−1)⋅tan(πt−1)or,f′(t)=6π⋅sec2(πt-1)⋅tan(πt-1)
1 educator answer
- MATH
h(t)=2(cot(πt+2))2h(t)=2(cot(πt+2))2 Find the derivative of the function.
h(t)=2(cot(πt+2))2=2cot2(πt+2)h(t)=2(cot(πt+2))2=2cot2(πt+2) h'(t)=4cot(πt+2)⋅[−cosec2(πt+2)]⋅πh′(t)=4cot(πt+2)⋅[-cosec2(πt+2)]⋅π or,h'(t)=−4π⋅cot(πt+2)⋅cosec2(πt+2)or,h′(t)=-4π⋅cot(πt+2)⋅cosec2(πt+2)
1 educator answer
- MATH
f(θ)=(14)(sin(2θ))2f(θ)=(14)(sin(2θ))2 Find the derivative of the function.
You need to evaluate the derivative of the function, hence you need to use the chain rule, differentiating first the power, then the sine function and then the argument, such that:
1 educator answer
- MATH
g(θ)=(cos(8θ))2g(θ)=(cos(8θ))2 Find the derivative of the function.
g(θ)={cos(8θ)}2=cos2(8θ)g(θ)={cos(8θ)}2=cos2(8θ) g'(θ)=2⋅cos(8θ)⋅(−sin(8θ))⋅8g′(θ)=2⋅cos(8θ)⋅(-sin(8θ))⋅8 or,g'(θ)=−16sin(8θ)cos(8θ)or,g′(θ)=-16sin(8θ)cos(8θ) or,g'(θ)=−8⋅sin(16θ)or,g′(θ)=-8⋅sin(16θ)
1 educator answer
- MATH
f(θ)=(tan(5θ))2f(θ)=(tan(5θ))2 Find the derivative of the function.
f(θ)={tan5(θ)}2=tan2(5θ)f(θ)={tan5(θ)}2=tan2(5θ) thus,f'(θ)=2⋅tan(5θ)⋅sec2(5θ)⋅5thus,f′(θ)=2⋅tan(5θ)⋅sec2(5θ)⋅5 or,f'(θ)=10⋅tan(5θ)⋅sec2(5θ)or,f′(θ)=10⋅tan(5θ)⋅sec2(5θ)
1 educator answer
- MATH
g(t)=5(cos(πt))2g(t)=5(cos(πt))2 Find the derivative of the function.
g(t) = 5(cos(πt))25(cos(πt))2 g'(t)=5⋅2⋅cos(πt)⋅{−sin(πt)}⋅πg′(t)=5⋅2⋅cos(πt)⋅{-sin(πt)}⋅π or,g'(t)=−10cos(πt)⋅sin(πt)or,g′(t)=-10cos(πt)⋅sin(πt) or,g'(t)=−5sin(2πt)or,g′(t)=-5sin(2πt)Note:- 1)2sint⋅cost=sin2t2sint⋅cost=sin2t
1 educator answer
- MATH
y=4(sec(x))2y=4(sec(x))2 Find the derivative of the function.
y=4sec2(x)y=4sec2(x) dydx=4⋅2⋅sec(x)⋅sec(x)⋅tan(x)dydx=4⋅2⋅sec(x)⋅sec(x)⋅tan(x) or,dydx=8sec2(x)tan(x)or,dydx=8sec2(x)tan(x) Note:- 1) If y = sec(x) ; then dy/dx = secx*tanx
1 educator answer
- MATH
g(v)=cos(v)csc(v)g(v)=cos(v)csc(v) Find the derivative of the function.
Given: g(v)=cos(v)csc(v)g(v)=cos(v)csc(v) The original function equivalent to g(v)=cos(v)sin(v).g(v)=cos(v)sin(v). g'(x)=cos(v)cos(v)+sin(v)(−sin(v))g′(x)=cos(v)cos(v)+sin(v)(-sin(v)) g'(x)=cos2(v)−sin2(v)g′(x)=cos2(v)-sin2(v)
1 educator answer
- MATH
f(x)=cot(x)sin(x)f(x)=cot(x)sin(x) Find the derivative of the function.
f(x)=cot(x)sin(x)f(x)=cot(x)sin(x) f'(x)=sin(x)⋅{−cosec2(x)}−cot(x)⋅cos(x)sin2(x)f′(x)=sin(x)⋅{-cosec2(x)}-cot(x)⋅cos(x)sin2(x) or,f'(x)=−cosec(x)−cot(x)⋅cos(x)sin2(x)or,f′(x)=-cosec(x)-cot(x)⋅cos(x)sin2(x)
1 educator answer