h(x)=6x−2+7x2h(x)=6x-2+7×2 Find the second derivative of the function.
- MATH
Given: f(x)=(34)x+2,[0,4]f(x)=(34)x+2,[0,4] First find the critical value(s) of the function (if any exist). To find the critical value(s) of the function, set the derivative equal to zero and solve for the…
1 educator answer
- MATH
f(x)=3−x,[−1,2]f(x)=3-x,[-1,2] Find the absolute extrema of the function on the closed interval.
Given: f(x)=3-x,[-1,2] First find the critical values of the function. To find the critical values of the function (if one exists), set the derivative of the function equal to zero and solve for…
1 educator answer
- MATH
f(θ)=2sec(θ)+tan(θ),0<θ<2πf(θ)=2sec(θ)+tan(θ),0<θ<2π Find the critical numbers of…
Given the function f(x) =2sec(θ)θ)+tan(θ)θ) in the interval 0<theta<2 pi We have to find the critical points. So let us first take the derivative of the function and evaluate it to…
1 educator answer
- MATH
h(x)=sin2(x)+cos(x),0<x<2πh(x)=sin2(x)+cos(x),0<x<2π Find the critical numbers of the function.
Given the function h(x)=sin2(x)+cos(x)h(x)=sin2(x)+cos(x) in the interval 0<x<2π0<x<2π We have to find the critical numbers of the function. First take the derivative of the function and equate it to zero. We…
1 educator answer
- MATH
f(x)=4xx2+1f(x)=4xx2+1 Find the critical numbers of the function.
Given f(x)=4xx2+1f(x)=4xx2+1 Find the derivative using the Quotient Rule. The set the derivative equal to zero and solve for the critical x value(s). f'(x)=(x2+1)(4)−(4x)(2x)x2+1=0f′(x)=(x2+1)(4)-(4x)(2x)x2+1=0…
1 educator answer
- MATH
g(t)=t4−t−−−−√,t<3g(t)=t4-t,t<3 Find the critical numbers of the function.
You need to evaluate the critical numbers of the function and for this reason, you must differentiate the function with respect to t, using the product and chain rules, such that:
1 educator answer
- MATH
g(x)=x4−8x2g(x)=x4-8×2 Find the critical numbers of the function.
You need to evaluate the critical numbers of the function and for this reason, you must differentiate the function with respect to x, such that: f'(x)=(x4−8×2)’f′(x)=(x4-8×2)′ f'(x)=4×3−16xf′(x)=4×3-16x You…
1 educator answer
- MATH
f(x)=x3−3x2f(x)=x3-3×2 Find the critical numbers of the function.
You need to evaluate the critical numbers of the function and for this reason, you must differentiate the function with respect to x, such that: f'(x)=(x3−3×2)’f′(x)=(x3-3×2)′ f'(x)=3×2−6xf′(x)=3×2-6x You need…
1 educator answer
- MATH
cos(x+y)=xcos(x+y)=x Find dydxdydx by implicit differentiation.
Note:- If y = cos(x) ; then dy/dx = -sin(x) Now, cos(x+y)=xcos(x+y)=x or,−sin(x+y)⋅{1+(dydx)}=1or,-sin(x+y)⋅{1+(dydx)}=1 or,1+(dydx)=−1sin(x+y)or,1+(dydx)=-1sin(x+y) or,1+(dydx)=−cosec(x+y)or,1+(dydx)=-cosec(x+y) or,dydx=−1−cosec(x+y)or,dydx=-1-cosec(x+y)
1 educator answer
- MATH
xsin(y)=ycos(x)xsin(y)=ycos(x) Find dydxdydx by implicit differentiation.
Note:- 1) If y = sinx; then dy/dx = cosx 2) If y = cos(x) ; then dy/dx = -sinx Now, x⋅sin(y)=y⋅cos(x)x⋅sin(y)=y⋅cos(x) or,x⋅cosy⋅(dydx)+sin(y)=−y⋅sin(x)+cos(x)⋅(dydx)or,x⋅cosy⋅(dydx)+sin(y)=-y⋅sin(x)+cos(x)⋅(dydx)
1 educator answer
- MATH
xy−−√=x−4yxy=x-4y Find dydxdydx by implicit differentiation.
xy−−√=x−4yxy=x-4y Differentiating both sides with respect to x, (12)(xy)−12ddx(xy)=1−4y'(12)(xy)-12ddx(xy)=1-4y′ 12xy−−√(xy’+y)=1−4y’12xy(xy′+y)=1-4y′ xy’+y=2xy−−√(1−4y’)xy′+y=2xy(1-4y′) xy’+y=2xy−−√−8xy−−√⋅y’xy′+y=2xy-8xy⋅y′…
1 educator answer
- MATH
(x3)y−x(y3)=4(x3)y-x(y3)=4 Find dydxdydx by implicit differentiation.
(x3)⋅y−x⋅(y3)=4(x3)⋅y-x⋅(y3)=4 differentiating 3(x2)⋅y+(x3)⋅(dydx)−(y3)−3x(y2)⋅(dydx)=03(x2)⋅y+(x3)⋅(dydx)-(y3)-3x(y2)⋅(dydx)=0 or,(dydx)⋅[(x3)−3x(y2)]=(y3)−3(x2)yor,(dydx)⋅[(x3)-3x(y2)]=(y3)-3(x2)y or,dydx=(y3)−3(x2)y(x3)−3x(y2)or,dydx=(y3)-3(x2)y(x3)-3x(y2)
1 educator answer
- MATH
x2+4xy−y3=6×2+4xy-y3=6 Find dydxdydx by implicit differentiation.
(x2)+4xy−(y3)=6(x2)+4xy-(y3)=6 differentiating 2x+4y+4x(dydx)−3(y2)⋅(dydx)=02x+4y+4x(dydx)-3(y2)⋅(dydx)=0 or,2(x+2y)=(dydx)⋅[3(y2)−4x]or,2(x+2y)=(dydx)⋅[3(y2)-4x] or,dydx=2(x+2y)3(y2)−4xor,dydx=2(x+2y)3(y2)-4x
1 educator answer
- MATH
x2+y2=64×2+y2=64 Find dydxdydx by implicit differentiation.
(x2)+(y2)=64(x2)+(y2)=64 Differentiating 2x+2y(dydx)=02x+2y(dydx)=0 or,x+y(dydx)=0or,x+y(dydx)=0 or,dydx=−xyor,dydx=-xy
1 educator answer
- MATH
y=(sin(x))2y=(sin(x))2 Find the second derivative of the function.
Note:- If y = sinx ; then dy/dx = cosx If y = cosx ; then dy/dx = -sinx 2sinx*cosx = sin(2x) Now, y=(sinx)2y=(sinx)2 or,y=sin2xor,y=sin2xdifferentiating y’=2sinx⋅cosxy′=2sinx⋅cosx or,y’=sin(2x)or,y′=sin(2x)…
1 educator answer
- MATH
f(x)=cot(x)f(x)=cot(x) Find the second derivative of the function.
Note:- 1) If y = cotx ; then dy/dx = −cosec2(x)-cosec2(x) 2) If y = cosecx ; then dy/dx = -cosecx*cotx Now, f(x)=y=cotxf(x)=y=cotx differentiating f'(x)=y’=−cosec2(x)f′(x)=y′=-cosec2(x) differentiating
1 educator answer
- MATH
y=15x+1y=15x+1 Find the second derivative of the function.
y=15x+1=(5x+1)−1y=15x+1=(5x+1)-1 d⇔erentiat∈gd⇔erentiat∈g y’=−1{(5x+1)−2}⋅5y′=-1{(5x+1)-2}⋅5 or,y’=−5(5x+1)−2or,y′=-5(5x+1)-2 Differentiating againg w.r.t ‘x’ we get y”=10⋅5⋅(5x+1)−3y′′=10⋅5⋅(5x+1)-3 or,y”=50(5x+1)3or,y′′=50(5x+1)3
1 educator answer
- MATH
y=(8x+5)3y=(8x+5)3 Find the second derivative of the function.
y=(8x+5)3y=(8x+5)3 y’=3⋅8⋅(8x+5)2y′=3⋅8⋅(8x+5)2 y’=24⋅(8x+5)2y′=24⋅(8x+5)2 y”=24⋅2⋅8⋅(8x+5)y′′=24⋅2⋅8⋅(8x+5) or,y”=384⋅(8x+5)or,y′′=384⋅(8x+5)
1 educator answer
- MATH
y=cosec(3x)+cot(3x)y=cosec(3x)+cot(3x) y’=−3⋅cosec(3x)⋅cot(3x)−3⋅cosec2(3x)y′=-3⋅cosec(3x)⋅cot(3x)-3⋅cosec2(3x) Putting x = pi/6 we get y’ = −3⋅cosex(π2)⋅cot(π2)−3⋅cosec2(π2)-3⋅cosex(π2)⋅cot(π2)-3⋅cosec2(π2) or,y’=−3⋅1⋅0−3⋅1or,y′=-3⋅1⋅0-3⋅1 or,y’=−3or,y′=-3
1 educator answer
- MATH
y=(12)csc(2x),(π412)y=(12)csc(2x),(π412) Find and evaluate the derivative of the function at the…
y=(12)⋅cosec(2x)y=(12)⋅cosec(2x) y’=−(12)⋅2⋅cosec(2x)⋅cot(2x)y′=-(12)⋅2⋅cosec(2x)⋅cot(2x)Putting x = pi/4 y’=−1⋅cosec(π2)⋅cot(π2)=−1⋅1⋅0=0y′=-1⋅cosec(π2)⋅cot(π2)=-1⋅1⋅0=0
1 educator answer
- MATH
f(x)=3x+14x−3,(4,1)f(x)=3x+14x-3,(4,1) Find and evaluate the derivative of the function at the…
f(x)=3x+14x−3f(x)=3x+14x-3 f'(x)=3⋅(4x−3)−4⋅(3x+1)(4x−3)2f′(x)=3⋅(4x-3)-4⋅(3x+1)(4x-3)2 or,f'(x)=−13(4x−3)2or,f′(x)=-13(4x-3)2 or,f'(4)=−13(4⋅4−3)2or,f′(4)=-13(4⋅4-3)2 or,f'(4)=−13(13)2or,f′(4)=-13(13)2 or,f'(4)=−113or,f′(4)=-113
1 educator answer
- MATH
f(x)=4×2+1,(−1,2)f(x)=4×2+1,(-1,2) Find and evaluate the derivative of the function at the given…
f(x)=4×2+1f(x)=4×2+1 or,f(x)=4⋅(x2+1)−1or,f(x)=4⋅(x2+1)-1 thus,f'(x)=−4⋅(2x)⋅(x2+1)−2thus,f′(x)=-4⋅(2x)⋅(x2+1)-2 or,f'(x)=−8x(x2+1)2or,f′(x)=-8x(x2+1)2 or,f'(−1)=−8⋅−1{(−1)2+1}2or,f′(-1)=-8⋅-1{(-1)2+1}2 or,f'(x)=84=2or,f′(x)=84=2
1 educator answer
- MATH
f(x)=x2−1−−−−−√3,(3,2)f(x)=x2-13,(3,2) Find and evaluate the derivative of the function at the…
f(x)=x2−1−−−−−√3f(x)=x2-13 f'(x)=(13)(x2−1)13−1(2x)f′(x)=(13)(x2-1)13-1(2x) f'(x)=2×3(x2−1)23f′(x)=2×3(x2-1)23 Therefore the derivative at the point(3,2) can be obtained by plugging in the value of x in the f'(x). f'(x)…
1 educator answer
- MATH
f(x)=1−x3−−−−−√f(x)=1-x3 f'(x)=(12)(1−x3)12−1(−3×2)f′(x)=(12)(1-x3)12-1(-3×2) f'(x)=−3×221−x3−−−−−√f′(x)=-3×221-x3 Therefore the derivative of the function at the point (-2,3) can be obtained by plugging in the value of of x…
1 educator answer
- MATH
h(x)=(x+5×2+3)2h(x)=(x+5×2+3)2 Find the derivative of the function.
Given: h(x)=(x+5×2+3)2h(x)=(x+5×2+3)2 To find the derivative of the function use the Quotient Rule within the Chain Rule. h(x)=2(x+5×2+3)[(x2+3)(1)−(x+5)(2x)(x+3)2]h(x)=2(x+5×2+3)[(x2+3)(1)-(x+5)(2x)(x+3)2]…
1 educator answer
- MATH
f(x)=3xx2+1−−−−−√f(x)=3xx2+1 Find the derivative of the function.
f(x)=3xx2+1−−−−−√f(x)=3xx2+1 Using the quotient rule of the derivative, f'(x)=3(x2+1−−−−−√−xddx(x2+1−−−−−√)(x2+1−−−−−√)2)f′(x)=3(x2+1-xddx(x2+1)(x2+1)2) f'(x)=3⎛⎝x2+1−−−−−√−x(12)(x2+1)−122xx2+1⎞⎠f′(x)=3(x2+1-x(12)(x2+1)-122xx2+1)…
1 educator answer
- MATH
f(s)=(s2−1)52(s3+5)f(s)=(s2-1)52(s3+5) Find the derivative of the function.
f(s)=(s2−1)52(s3+5)f(s)=(s2-1)52(s3+5) Using the product rule for the derivative, f'(s)=(s2−1)52dds(s3+5)+(s3+5)dds(s2−1)52f′(s)=(s2-1)52dds(s3+5)+(s3+5)dds(s2-1)52 f'(s)=(s2−1)52(3s2)+(s3+5)(52)(s2−1)(52)−1(2s)f′(s)=(s2-1)52(3s2)+(s3+5)(52)(s2-1)(52)-1(2s)…
1 educator answer
- MATH
y=x(6x+1)5y=x(6x+1)5 Find the derivative of the function.
You need to differentiate the function with respect to x, using the product rule and chain rule, such that: y’=x’⋅(6x+1)5+x⋅((6x+1)5)’y′=x′⋅(6x+1)5+x⋅((6x+1)5)′ y’=1⋅(6x+1)5+x⋅5⋅(6x+1)4⋅(6x+1)’y′=1⋅(6x+1)5+x⋅5⋅(6x+1)4⋅(6x+1)′
1 educator answer
- MATH
y=(sec(x))77−(sec(x))55y=(sec(x))77-(sec(x))55 Find the derivative of the function.
Given: y=(sec(x))77−(sec(x))55y=(sec(x))77-(sec(x))55 y’=7sec(x)67sec(x)tan(x)−5sec(x)45sec(x)tan(x)y′=7sec(x)67sec(x)tan(x)-5sec(x)45sec(x)tan(x) y’=(sec(x))7tan(x)−(sec(x))5tan(x)y′=(sec(x))7tan(x)-(sec(x))5tan(x) y’=(sec(x))5tan(x)[(sec(x))2−1]y′=(sec(x))5tan(x)[(sec(x))2-1]…
1 educator answer
- MATH
y=x2−sin(2x)4y=x2-sin(2x)4 Find the derivative of the function.
Note:- 1) If y = sin(x) ; then dy/dx = cos(x) 2) If y = x^n ; then dy/dx = n*x^(n-1) ; where n = constant Now, y=(x2)−{sin(2x)4}y=(x2)-{sin(2x)4} dydx=y’=(12)−2cos(2x)4dydx=y′=(12)-2cos(2x)4
1 educator answer
- MATH
y=1−cos(2x)+2(cos(x))2y=1-cos(2x)+2(cos(x))2 Find the derivative of the function.
y = 1- cos(2x) + 2(cos2x)(cos2x) dydx=y’=2⋅sin(2x)−4⋅cosx⋅sinxdydx=y′=2⋅sin(2x)-4⋅cosx⋅sinxor,y’=2sin(2x)−2sin(2x)=0or,y′=2sin(2x)-2sin(2x)=0 note: 2sinx⋅cosx=sin2x2sinx⋅cosx=sin2x
1 educator answer
- MATH
y=5cos(9x+1)y=5cos(9x+1) Find the derivative of the function.
Note:- If y = cos(ax) ; then dy/dx = -a*sin(ax) Now, y=5cos(9x+1)y=5cos(9x+1) dydx=y’=−5⋅(sin(9x+1))⋅9dydx=y′=-5⋅(sin(9x+1))⋅9 or,dydx=y’=−45sin(9x+1)or,dydx=y′=-45sin(9x+1)
1 educator answer
- MATH
f(x)=1(5x+1)2f(x)=1(5x+1)2 Find the derivative of the function.
Note :- 1) If y = x^n ; where n = constant, then dy/dx = n*(x^(n-1)) 2) If y = n*x ; where n = constant ; then dy/dx = n Now, y=1(5x+1)2y=1(5x+1)2 or,y=(5x+1)−2or,y=(5x+1)-2
1 educator answer
- MATH
y=1×2+4y=1×2+4 Find the derivative of the function.
Note:- If y = x^n ; where n = constant, then dy/dx = n*x^(n-1) Now, y=1(x2)+4y=1(x2)+4 Thus,y={(x2)+4}−1Thus,y={(x2)+4}-1 or,y’=−1{{(x2)+4}−2}⋅(2x)or,y′=-1{{(x2)+4}-2}⋅(2x) or,y’=−2x{(x2)+4}2or,y′=-2x{(x2)+4}2
1 educator answer
- MATH
y=(x2−6)3y=(x2-6)3 Find the derivative of the function.
Note:- If y = x^n ; where n = constant ; then dy/dx = n*{x^(n-1)} Now, y=(x2−6)3y=(x2-6)3 thus,dydx=y’=3⋅{(x2−6)2}⋅(2x)thus,dydx=y′=3⋅{(x2-6)2}⋅(2x) or,dydx=y’=6x⋅(x2−6)2or,dydx=y′=6x⋅(x2-6)2
1 educator answer
- MATH
y=(7x+3)4y=(7x+3)4 Find the derivative of the function.
Note:- If y = x^n ; where n = constant ; then dy/dx = n*{x^(n-1)} Now, y = (7x+3)4(7x+3)4 thus,dydx=y’=4{(7x+3)3}⋅7thus,dydx=y′=4{(7x+3)3}⋅7 or,dydx=y’=28(7x+3)3or,dydx=y′=28(7x+3)3
1 educator answer
- MATH
h(t)=10cos(t)−15sin(t)h(t)=10cos(t)-15sin(t) Find the second derivative of the function.
Note:- If y = cos(ax) ; then dy/dx = -a*sin(ax) If y = sin(ax) ; then dy/dx = a*cos(ax) ; where ‘a’ = constant Now, h(t)=10cos(t)−15sin(t)h(t)=10cos(t)-15sin(t) h'(t)=−10sin(t)−15cos(t)h′(t)=-10sin(t)-15cos(t)
1 educator answer
- MATH
f(θ)=3tan(θ)f(θ)=3tan(θ) Find the second derivative of the function.
Note:- If y = tanx ; then dy/dx = sec^2(x) If y = sec(x) ; then dy/dx = sec(x)*tan(x) Now, f(θ)=3tan(θ)f(θ)=3tan(θ) f'(θ)=3sec2(θ)f′(θ)=3sec2(θ) f”(θ)=3⋅2sec(θ)⋅sec(θ)⋅tan(θ)f′′(θ)=3⋅2sec(θ)⋅sec(θ)⋅tan(θ)…
1 educator answer
- MATH
f(x)=20x−−√5f(x)=20×5 Find the second derivative of the function.
Note:- If y = x^n ; where n = constant ; then dy/dx = n*{x^(n-1)} Now, y=20⋅x15y=20⋅x15 y’=20⋅(15)⋅x(15)−1y′=20⋅(15)⋅x(15)-1 or,y’=4⋅x−45or,y′=4⋅x-45 thus,y”=4⋅(−45)⋅x(−45)−1thus,y′′=4⋅(-45)⋅x(-45)-1
1 educator answer
- MATH
f(x)=15x52f(x)=15×52 Find the second derivative of the function.
Note:- If y = x^n ; where n = constant ; then dy/dx = n*{x^(n-1)} Now, y=15⋅x52y=15⋅x52 y’=15⋅(52)⋅x(52)−1y′=15⋅(52)⋅x(52)-1 or,y’=(752)⋅x32or,y′=(752)⋅x32 thus,y”=(752)⋅(32)⋅x(32)−1thus,y′′=(752)⋅(32)⋅x(32)-1
1 educator answer
- MATH
h(x)=6x−2+7x2h(x)=6x-2+7×2 Find the second derivative of the function.
Note:- If y = x^n ; where n = constant ; then dy/dx = n*x^(n-1) Now, h(x)=6x−2+7x2h(x)=6x-2+7×2 h'(x)=−12x−3+14xh′(x)=-12x-3+14x h”(x)=−12⋅(−3)⋅x−4+14h′′(x)=-12⋅(-3)⋅x-4+14 or,h”(x)=36x−4+14or,h′′(x)=36x-4+14
1 educator answer
- MATH
g(t)=−8t3−5t+12g(t)=-8t3-5t+12 Find the second derivative of the function.
Note:- If y = x^n ; where n = constant ; then dy/dx = n*x^(n-1) Now, g(t)=−8t3−5t+12g(t)=-8t3-5t+12 g'(t)=−8⋅3⋅t2−5+0g′(t)=-8⋅3⋅t2-5+0 or,g'(t)=−24t2−5or,g′(t)=-24t2-5 Thus,g”(t)=−24⋅2⋅t1−0Thus,g′′(t)=-24⋅2⋅t1-0 or,g”(t)=−48tor,g′′(t)=-48t
1 educator answer
- MATH
Hello! f(x)=1+cos(x)1−cos(x).f(x)=1+cos(x)1-cos(x). First, let’s check that f(π2)=1f(π2)=1 : cos(π2)=0cos(π2)=0 and (1+0)/(1-0) = 1. Then remember that1+cos(x)=2⋅[cos(x2)]21+cos(x)=2⋅[cos(x2)]2 and 1−cos(x)=2⋅[sin(x2)]21-cos(x)=2⋅[sin(x2)]2 ….
1 educator answer
- MATH
f(x)=x+1x−1,((12),−3)f(x)=x+1x-1,((12),-3) Find an equation of the tangent line to the graph of…
f(x)=x+1x−1f(x)=x+1x-1 f'(x)=(x−1)⋅1−(x+1)⋅1(x−1)2f′(x)=(x-1)⋅1-(x+1)⋅1(x-1)2 or,f'(x)=−2(x−1)2or,f′(x)=-2(x-1)2 Now, slope of the tangent at point ((1/2),-3) = f'(1/2) = -8 Thus, equation of the tangent to the curve at the…
1 educator answer
- MATH
Given: f(x)=(x−4)(x2+6x−1),(0,4)f(x)=(x-4)(x2+6x-1),(0,4) Find the derivative of the function using the Product Rule. Then plug in the given x value into the derivative function to calculate the slope….
1 educator answer
- MATH
Given: f(x)=(x+2)(x2+5),(−1,6)f(x)=(x+2)(x2+5),(-1,6) Find the derivative using the Quotient Rule. Then substitute in the given x value into the f'(x) equation to calculate the slope. f'(x)=(x+2)(2x)+(x2+5)(1)f′(x)=(x+2)(2x)+(x2+5)(1)…
1 educator answer
- MATH
You need to evaluate the derivative of the given function, using the product tule for the products 3x⋅sinx3x⋅sinx and x2⋅cosxx2⋅cosx , such that:
1 educator answer
- MATH
You need to evaluate the derivative of the given function, using the product rule for the product x*cos x, such that: f'(x)=((x)'(cosx)+(x)(cosx)’)−(sinx)’f′(x)=((x)′(cosx)+(x)(cosx)′)-(sinx)′
1 educator answer
- MATH
y=2x−(x2)tan(x)y=2x-(x2)tan(x) Use the Product Rule or the Quotient Rule to find the derivative of…
y=2x−x2tan(x)y=2x-x2tan(x) Now to evaluate the derivative , let us first apply the Sum/Difference rule i.e. (f±g)’=f’±g'(f±g)′=f′±g′ y’=ddx(2x)−ddx(x2tan(x))y′=ddx(2x)-ddx(x2tan(x)) y’=2−ddx(x2tan(x))y′=2-ddx(x2tan(x)) Now applying the product rule…
1 educator answer
- MATH
y=3(x2)sec(x)y=3(x2)sec(x) Use the Product Rule or the Quotient Rule to find the derivative of the…
You need to evaluate the derivative of the given function, using the product tule for the product 3×2⋅secx3x2⋅secx , such that: f'(x)=(3×2)’⋅(secx)+3×2⋅(secx)’f′(x)=(3×2)′⋅(secx)+3×2⋅(secx)′
1 educator answer