What is a “plasticity poem?
- MATH
sec2(x)+0.5tan(x)−1=0sec2(x)+0.5tan(x)-1=0 Use a graphing utility to approximate the solutions (to…
see the attached graph. Solutions in the given interval are, x ≈≈ 0 , 2.700 , 3.100(pi) , 5.800 , 6.200(2pi)
1 educator answer
- MATH
xcos(x)−1=0xcos(x)-1=0 Use a graphing utility to approximate the solutions (to three decimal…
see attached graph Solution in the given interval, x ≈≈ 4.900
1 educator answer
- MATH
xtan(x)−1=0xtan(x)-1=0 Use a graphing utility to approximate the solutions (to three decimal…
see attached graph solutions in the given interval are, x ≈≈ 0.875 , 3.375
1 educator answer
- MATH
See the attached graph. Since the equation is undefined for x=pi/2 x=pi/6 , 5pi/6 x ≈≈ 0.500 , 2.600
1 educator answer
- MATH
See attached graph x=π3,5π3π3,5π3 x ≈≈ 1.000 , 5.200
1 educator answer
- MATH
See the attached graph Solutions in the given interval are, x=π4,3π4,5π4,7π4,7π6,11π6x=π4,3π4,5π4,7π4,7π6,11π6 x≈0.800,2.300,3.600,3.900,5.500,5.800x≈0.800,2.300,3.600,3.900,5.500,5.800
1 educator answer
- MATH
Solutions of 2sin(x)+cos(x)=02sin(x)+cos(x)=0 in the interval (0,2pi) See the attached graph, x ≈≈ 2.700 , 5.800
1 educator answer
- MATH
y=sec4(πx8)−4y=sec4(πx8)-4 Find the x-intercepts of the graph.
x-intercepts are the points where y=0. So we have to solve equation sec4(πx8)−4=0,sec4(πx8)-4=0, or sec4(πx8)=4.sec4(πx8)=4. Then sec2(πx8)=2,sec2(πx8)=2, or sec(πx8)=±2–√.sec(πx8)=±2. sec(y) = 1/cos(y), therefore…
1 educator answer
- MATH
y=tan2(πx6)−3y=tan2(πx6)-3 Find the x-intercepts of the graph.
x-intercepts are points where y=0, so we have to solve the equation tan2(πx6)−3=0.tan2(πx6)-3=0. This implies that tan(πx6)=3–√tan(πx6)=3 or tan(πx6)=−3–√,tan(πx6)=-3, and this in turn implies…
1 educator answer
- MATH
y=sin(πx)+cos(πx)y=sin(πx)+cos(πx) Find the x-intercepts of the graph.
You need to evaluate the x intercepts of the graph, hence, you need to remember that the graph intercepts x axis at y = 0. Hence, you need to solve for x the equation y=f(x)=0y=f(x)=0 .
1 educator answer
- MATH
y=sin(πx2)+1y=sin(πx2)+1 Find the x-intercepts of the graph.
y=sin(πx2)+1y=sin(πx2)+1 Before we solve for the x-intercepts, let’s determine the period of this function. Take note that if a trigonometric function has a form y= Asin(Bx + C) + D, its period…
1 educator answer
- MATH
2sin(x2)+3–√=02sin(x2)+3=0 Solve the multiple-angle equation.
sin(x2)=−3–√2.sin(x2)=-32. The general solution is x2=(−1)k⋅arcsin(−3–√2)+kπ,k∈Z.x2=(-1)k⋅arcsin(-32)+kπ,k∈ℤ. So x=(−1)k+1⋅(2π3)+2kπ,k∈Z,x=(-1)k+1⋅(2π3)+2kπ,k∈ℤ, because arcsin(−3–√2)=−π3.arcsin(-32)=-π3.
1 educator answer
- MATH
2cos(x2)−2–√=02cos(x2)-2=0 Solve the multiple-angle equation.
2cos(x2)−2–√=0,2cos(x2)-2=0, 2cos(x2)=2–√,2cos(x2)=2, cos(x2)=2–√2.cos(x2)=22. The general solution is: x2=±arccos(2–√2)+2kπ,x2=±arccos(22)+2kπ, k∈Z.k∈ℤ. arccos(2–√2)=π4,arccos(22)=π4, so the final answer is:
1 educator answer
- MATH
sec(4x)−2=0sec(4x)-2=0 Solve the multiple-angle equation.
sec(4x)−2=0,sec(4x)-2=0, sec(4x)=2.sec(4x)=2. Because sec(x)=1cos(x),sec(x)=1cos(x), obtain cos(4x)=12.cos(4x)=12. The general solution is 4x=±arccos(12)+2kπ,4x=±arccos(12)+2kπ,k∈Z.k∈ℤ. arccos(12)=π3,arccos(12)=π3, so the final answer is…
1 educator answer
- MATH
tan(3x)−1=0tan(3x)-1=0 Solve the multiple-angle equation.
tan(3x)=1. tan(y) has period ππ and reaches any value once on each period. We know that tan(π4)=1,tan(π4)=1, so 3x=π4+k⋅π,k∈Z.3x=π4+k⋅π,k∈ℤ. The answer is x=π12+k⋅(π3),k∈Z.x=π12+k⋅(π3),k∈ℤ.
1 educator answer
- MATH
2sin(2x)+3–√=02sin(2x)+3=0 Solve the multiple-angle equation.
2sin(2x)+3–√=0,2sin(2x)+3=0, sin(2x)=−3–√2.sin(2x)=-32. The general solution is 2x=(−1)k⋅arcsin(−3–√2)+kπ,2x=(-1)k⋅arcsin(-32)+kπ, k∈Z.k∈ℤ. Because arcsin(−3–√2)=−π3,arcsin(-32)=-π3, the final answer is…
1 educator answer
- MATH
2cos(2x)−1=02cos(2x)-1=0 Solve the multiple-angle equation.
2cos(2x)−1=0,2cos(2x)-1=0, cos(2x)=12.cos(2x)=12. The general solution is 2x=±arccos(12)+2kπ,2x=±arccos(12)+2kπ, k∈Z.k∈ℤ. Because arccos(12)=π3,arccos(12)=π3,the final answer is x=±π6+kπ,x=±π6+kπ, k∈Z.k∈ℤ.
1 educator answer
- MATH
sec(x)+tan(x)=1sec(x)+tan(x)=1 Find all the solutions of the equation in the interval 0,2π)0,2π).
sec(x)+tan(x)=1sec(x)+tan(x)=1 1cos(x)+sin(x)cos(x)=11cos(x)+sin(x)cos(x)=1 1+sin(x)=cos(x)1+sin(x)=cos(x)1+sin(x)−cos(x)=01+sin(x)-cos(x)=0 1+cos(π2−x)−cos(x)=01+cos(π2-x)-cos(x)=0 1+(2sin(π2−x+x2)sin(x−π2+x2)=01+(2sin(π2-x+x2)sin(x-π2+x2)=0 1+2sin(π4)sin(x−π4)=01+2sin(π4)sin(x-π4)=0…
1 educator answer
- MATH
csc(x)+cot(x)=1csc(x)+cot(x)=1 Find all the solutions of the equation in the interval 0,2π)0,2π).
csc(x)+cot(x)=1csc(x)+cot(x)=1 1sin(x)+cos(x)sin(x)=11sin(x)+cos(x)sin(x)=1 1+cos(x)=sin(x)1+cos(x)=sin(x) 1+cos(x)−sin(x)=01+cos(x)-sin(x)=0 1+cos(x)−cos(π2−x)=01+cos(x)-cos(π2-x)=0 1+2sin(x+π2−x2)sin(π2−x−x2)=01+2sin(x+π2-x2)sin(π2-x-x2)=0 1+2sin(π4)sin(π4−x)=01+2sin(π4)sin(π4-x)=0…
1 educator answer
- MATH
cos(x)+sin(x)tan(x)=2cos(x)+sin(x)tan(x)=2 cos(x)+sin(x)(sin(x)cos(x))=2cos(x)+sin(x)(sin(x)cos(x))=2 cos2(x)+sin2(x)cos(x)=2cos2(x)+sin2(x)cos(x)=2 1cos(x)=21cos(x)=2 cos(x)=12cos(x)=12 General solutions for cos(x)=1/2 are, x=π3+2πn,5π3+2πnx=π3+2πn,5π3+2πn Solutions for…
1 educator answer
- MATH
2sec2(x)+tan2(x)−3=02sec2(x)+tan2(x)-3=0 Find all the solutions of the equation in the interval…
Find all solutions to the equation 2sec2(x)+tan2(x)−3=02sec2(x)+tan2(x)-3=0 in the interval [0,2π).[0,2π). 2sec2(x)+tan2(x)−3=02sec2(x)+tan2(x)-3=0 Use the pythagorean identity sec2(x)=1+tan2(x)sec2(x)=1+tan2(x) to substitute in for…
1 educator answer
- MATH
Solve the equation 2sin2(x)+3sin(x)+1=02sin2(x)+3sin(x)+1=0 in the interval [0,2pi). 2sin2(x)+3sin(x)+1=02sin2(x)+3sin(x)+1=0 (2sin(x)+1)(sin(x)+1)=0(2sin(x)+1)(sin(x)+1)=0 Set each factor equal to zero and solve for the x value(s). 2sin(x)+1=02sin(x)+1=0…
1 educator answer
- MATH
Find all solutions to the equation 2cos2(x)+cos(x)−1=02cos2(x)+cos(x)-1=0 in the interval [0,2π).[0,2π). 2cos2(x)+cos(x)−1=02cos2(x)+cos(x)-1=0 (2cos(x)−1)(cos(x)+1)=0(2cos(x)-1)(cos(x)+1)=0 Set each factor equal to zero and solve for the x value(s)….
1 educator answer
- MATH
sin(x)−2=cos(x)−2sin(x)-2=cos(x)-2 sin(x)−2−cos(x)+2=0sin(x)-2-cos(x)+2=0 sin(x)−cos(x)=0sin(x)-cos(x)=0 sin(x)−cos(x)cos(x)=0sin(x)-cos(x)cos(x)=0 tan(x)−1=0tan(x)-1=0 tan(x)=1tan(x)=1 General solutions for tan(x)=1 are x=π4+πnx=π4+πn Solutions for the range…
1 educator answer
- MATH
2sin(x)+csc(x)=02sin(x)+csc(x)=0 Find all the solutions of the equation in the interval 0,2π)0,2π).
2sin(x)+csc(x)=02sin(x)+csc(x)=0 2sin(x)+1sin(x)=02sin(x)+1sin(x)=0 2sin2(x)+1sin(x)=02sin2(x)+1sin(x)=0solving above , 2sin2(x)+1=02sin2(x)+1=0 2sin2(x)=−12sin2(x)=-1 sin2x=−12sin2x=-12 sin(x)=±i2–√sin(x)=±i2 Solutions for the range 0≤x≤2π0≤x≤2π No…
1 educator answer
- MATH
sec(x)csc(x)=2csc(x)sec(x)csc(x)=2csc(x) sec(x)csc(x)−2csc(x)=0sec(x)csc(x)-2csc(x)=0 csc(x)(sec(x)−2)=0csc(x)(sec(x)-2)=0 csc(x)=0,sec(x)=2csc(x)=0,sec(x)=2 No solutions for x for csc(x) in the range 0≤x≤2π0≤x≤2π General solutions for sec(x)=2 are…
1 educator answer
- MATH
Solve the equation sec2(x)−sec(x)=2,[0,2π).sec2(x)-sec(x)=2,[0,2π). sec2(x)−sec(x)−2=0sec2(x)-sec(x)-2=0 (sec(x)−2)(sec(x)+1)=0(sec(x)-2)(sec(x)+1)=0 Set each factor equal to zero and solve for the x values. sec(x)−2=0sec(x)-2=0 sec(x)=2sec(x)=2 cos(x)=12cos(x)=12…
1 educator answer
- MATH
Find all solutions for 2sin2(x)=2+cos(x)2sin2(x)=2+cos(x) in the interval [0, 2π).2π).Use the pythagorean identity sin2(x)+cos2(x)=1.sin2(x)+cos2(x)=1. Solve for sin2(x)sin2(x) and the pythagorean identity would be…
1 educator answer
- MATH
3tan3(x)=tan(x)3tan3(x)=tan(x) Find all the solutions of the equation in the interval 0,2π)0,2π).
3tan3(x)=tan(x)3tan3(x)=tan(x) 3tan3(x)−tan(x)=03tan3(x)-tan(x)=0 tan(x)(3tan2(x)−1)=0⇒tan(x)(3tan2(x)-1)=0⇒ tan(x)=0,(3tan2(x)−1)=0tan(x)=0,(3tan2(x)-1)=0General solutions for tan(x)=0 are, x=0+πnx=0+πn Solutions in the range 0≤x≤2π0≤x≤2π are,
1 educator answer
- MATH
sec2(x)−1=0sec2(x)-1=0 Find all the solutions of the equation in the interval 0,2π)0,2π).
Solve: sec2(x)−1=0,[0,2π)sec2(x)-1=0,[0,2π) tan2(x)=1tan2(x)=1 tan(x)=±1–√tan(x)=±1 tan(x)=±1tan(x)=±1 x=π4,x=3π4,x=5π4,x=7π4x=π4,x=3π4,x=5π4,x=7π4
1 educator answer
- MATH
cos3(x)=cos(x)cos3(x)=cos(x) Find all the solutions of the equation in the interval 0,2π)0,2π).
cos3(x)=cos(x)cos3(x)=cos(x) Let cos(x)=ycos(x)=y y3=yy3=y y3−y=0y3-y=0 y(y+1)(y−1)=0y(y+1)(y-1)=0 solve for y, y=0 , -1 , 1 Therefore cos(x)=0 , cos(x)=-1 and cos(x)=1 General solutions for cos(x)=0 are,
1 educator answer
- MATH
(2sin2(x)−1)(tan2(x)−3)=0(2sin2(x)-1)(tan2(x)-3)=0 Solve the equation.
Solve the equation (2sin2(x)−1)(tan2(x)−3)=0(2sin2(x)-1)(tan2(x)-3)=0 Set each factor equal to zero and solve for the x values. 2sin2(x)−1=02sin2(x)-1=0 2sin2(x)=12sin2(x)=1 sin2(x)=12sin2(x)=12 sin(x)=±12−−√sin(x)=±12 sin(x)=±2–√2sin(x)=±22…
1 educator answer
- MATH
sin(x)(sin(x)+1)=0sin(x)(sin(x)+1)=0 Solve the equation.
Solve sin(x)(sin(x)+1)=0sin(x)(sin(x)+1)=0 sin(x)=0sin(x)=0 x=0+πnx=0+πn sin(x)+1=0sin(x)+1=0 sin(x)=−1sin(x)=-1 x=3π2+2πnx=3π2+2πn
1 educator answer
- MATH
cos(2x)(2cos(x)+1)=0cos(2x)(2cos(x)+1)=0 Solve the equation.
cos(2x)(2cos(x)+1)=0cos(2x)(2cos(x)+1)=0 solving each part, cos(2x)=0 General solutions for cos(2x)=0 are, 2x=π2+2πn,3π2+2πn2x=π2+2πn,3π2+2πn x=π+4πn4,3π+4πn4x=π+4πn4,3π+4πn4 Solving 2cos(x)+1=0, 2cos(x)=−12cos(x)=-1…
1 educator answer
- MATH
tan(3x)tan(x−1)=0tan(3x)tan(x-1)=0 Solve the equation.
tan(3x)tan(x−1)=0tan(3x)tan(x-1)=0 solving each part, tan(3x)=0 General solutions for tan(3x)=0 are, 3x=0+πn3x=0+πn x=πn3x=πn3 General solutions for tan(x-1)=0 are, x−1=0+πnx-1=0+πn x=1+πnx=1+πn so the solutions are,…
1 educator answer
- MATH
tan2(3x)=3tan2(3x)=3 Solve the equation.
tan2(3x)=3tan2(3x)=3 tan(3x)=±3–√tan(3x)=±3 General solutions for tan(3x)=-3–√3are 3x=2π3+πn3x=2π3+πn x=3πn+2π9x=3πn+2π9 General solutions for tan(3x)=3–√3 are 3x=π3+πn3x=π3+πn x=3πn+π9x=3πn+π9 Therefore…
1 educator answer
- MATH
2sin2(2x)=12sin2(2x)=1 Solve the equation.
2sin2(2x)=12sin2(2x)=1 sin2(2x)=12sin2(2x)=12 sin(2x)=±12–√sin(2x)=±12 General solutions for sin(2x)=-1/2–√2 2x=5π4+2πn,7π4+2πn2x=5π4+2πn,7π4+2πn x=5π+8πn8,7π+8πn8x=5π+8πn8,7π+8πn8 General solutions for…
1 educator answer
- MATH
sin2(x)=3cos2(x)sin2(x)=3cos2(x) Solve the equation.
sin2(x)=3cos2(x)sin2(x)=3cos2(x) sin2(x)cos2(x)=3sin2(x)cos2(x)=3 tan2(x)=3tan2(x)=3 tan(x)=±3–√tan(x)=±3General solutions for tan(x)=3–√3 are x=π3+πnx=π3+πn General solutions for tan(x)=-3–√3 are x=2π3+πnx=2π3+πn So…
1 educator answer
- MATH
4cos2(x)−1=04cos2(x)-1=0 Solve the equation.
Solve the equation 4cos2(x)−1=04cos2(x)-1=0 4cos2(x)=14cos2(x)=1 cos2(x)=14cos2(x)=14 cos(x)=±14−−√cos(x)=±14 cos(x)=±12cos(x)=±12 x=π3+πnx=π3+πn x=2π3+πnx=2π3+πn
1 educator answer
- MATH
3cot2(x)−1=03cot2(x)-1=0 Solve the equation.
Solve the equation 3cot2(x)−1=03cot2(x)-1=0 3cot2(x)=13cot2(x)=1 cot2(x)=13cot2(x)=13 cot(x)=±13−−√cot(x)=±13 cot(x)=±13–√cot(x)=±13 tan(x)=±3–√tan(x)=±3 x=π3+πnx=π3+πnx=2π3+πnx=2π3+πn
1 educator answer
- MATH
3sec2(x)−4=03sec2(x)-4=0 Solve the equation.
Solve the equation 3sec2(x)−4=03sec2(x)-4=0 3sec2(x)=43sec2(x)=4 sec2(x)=43sec2(x)=43 sec(x)=±43−−√sec(x)=±43 sec(x)=±23–√±23 Because cosine and secant are reciprocal functions cos(x)=±3–√2cos(x)=±32 x=π6+πnx=π6+πn…
1 educator answer
- MATH
3sin(x)+1=sin(x)3sin(x)+1=sin(x) Solve the equation.
Solve the equation 3sin(x)+1=sin(x)3sin(x)+1=sin(x) 3sin(x)+1−sin(x)=03sin(x)+1-sin(x)=0 2sin(x)+1=02sin(x)+1=0 sin(x)=−12sin(x)=-12 x=7π6+2πnx=7π6+2πn x=11π6+2πnx=11π6+2πn
1 educator answer
- MATH
cos(x)+1=−cos(x)cos(x)+1=-cos(x) Solve the equation.
Solve the equation cos(x)+1=−cos(x)cos(x)+1=-cos(x) 2cos(x)+1=02cos(x)+1=0 2cos(x)=−12cos(x)=-1 cos(x)=−12cos(x)=-12 x=2π3+2πn,x=4π3+2πnx=2π3+2πn,x=4π3+2πn
1 educator answer
- MATH
tan(x)+3–√=0tan(x)+3=0 Solve the equation.
tan(x)+3–√=0tan(x)+3=0 tan(x)=−3–√tan(x)=-3 x=2π3+πnx=2π3+πn General solution for x,
1 educator answer
- MATH
3–√csc(x)−2=03csc(x)-2=0 Solve the equation.
Solve the equation: 3–√csc(x)−2=03csc(x)-2=0 csc(x)=23–√csc(x)=23 Since sin(x) and csc(x) are reciprocal functions sin(x)=3–√2sin(x)=32 x=π3+2πnx=π3+2πn x=2π3+2πnx=2π3+2πn
1 educator answer
- MATH
tan(t)cot(t)=1tan(t)cot(t)=1 Verfiy the identity.
Verify the identity: tan(t)cot(t)=1tan(t)cot(t)=1 Simplify the left side of the equation by using the reciprocal identity cot(t)=1/tan(t). tan(t)⋅1tan(t)=1tan(t)⋅1tan(t)=1 tan(t)tan(t)=1tan(t)tan(t)=1 1=11=1
1 educator answer
- SCIENCE
Avalanches are natural events (or hazards due to their destructive capacity) that are characterized by movement of very large snow mass over a slope. Extremely large quantity of snow moves very…
1 educator answer
- SOCIAL SCIENCES
When a monopoly’s fixed costs increase, why does the price stay the same and the profit increase?
I believe that you must have made a mistake in typing in this question. When a monopoly’s fixed costs increase, it is true that the price the monopoly charges does not increase. However, it is…
3 educator answers
- HISTORY
How did the U.S. economy end up suffering both from inflation and high unemployment?
In the 1970s, the United States experienced something economically that had never happened in our country. We had both high unemployment and high inflation at the same. We had strategies to deal…
3 educator answers
- LITERATURE
What is a “plasticity poem?” Is it a genre?
I’ve read and studied poetry, much at the graduate level, for over 15 of my adult years and I’ve never heard of “plasticity poetry.” Based on that–I read quite broadly–as well as the fact that…
1 educator answer